Skip to main content
Log in

Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Barrangou R (2015) The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32C:36–41

    Article  Google Scholar 

  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  3. Barrangou R, Horvath P (2012) CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 3:143–162

    Article  CAS  PubMed  Google Scholar 

  4. Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  6. Brannen PM, Kenney DS (1997) Kodiak®—a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J Ind Microbiol Biotechnol 19:169–171

    Article  CAS  Google Scholar 

  7. Calendar R, Abedon ST, others, (2005) The bacteriophages. Oxford University Press, New York

  8. Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM (1997) Biological warfare. A historical perspective. JAMA 278:412–417

    Article  CAS  PubMed  Google Scholar 

  9. Van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  11. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:2579–2586

    Article  Google Scholar 

  12. Hesseltine CW (1983) Microbiology of oriental fermented foods. Annu Rev Microbiol 37:575–601

    Article  CAS  PubMed  Google Scholar 

  13. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  15. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  16. Mc Grath S, van Sinderen D (2007) Bacteriophage: genetics and molecular biology. Horizon Scientific Press, Norfolk, UK

    Google Scholar 

  17. Van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sanchez H, Cozar MC, Martinez-Jimenez MI (2007) Targeting the Bacillus subtilis genome: an efficient and clean method for gene disruption. J Microbiol Methods 70:389–394

    Article  CAS  PubMed  Google Scholar 

  19. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  21. Scherer G (1978) Nucleotide sequence of the O gene and of the origin of replication in bacteriophage lambda DNA. Nucleic Acids Res 5:3141–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310

    Article  CAS  PubMed  Google Scholar 

  23. Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. BIOPESTICIDE REGISTRATION ACTION DOCUMENT Bacillus subtilis strain QST 713. http://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006479_9-Aug-06.pdf. Accessed 14 Mar 2016

Download references

Acknowledgments

We thank Dr. Paulo Tavares (CNRS, Gif-sur-Yvette) and Dr. R. Sapranauskas for kindly provided plasmids.

Funding

L Jakutyte-Giraitiene was supported by the postdoctoral fellowship which is being funded by the European Union Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania”. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Jakutyte-Giraitiene.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakutyte-Giraitiene, L., Gasiunas, G. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1. J Ind Microbiol Biotechnol 43, 1183–1188 (2016). https://doi.org/10.1007/s10295-016-1784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1784-0

Keywords

Navigation