Skip to main content
Log in

Optimizing production and evaluating biosynthesis in situ of a herbicidal compound, mevalocidin, from Coniolariella sp.

  • Natural Products
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Mevalocidin is a fungal secondary metabolite produced by Coniolariella sp. It is a unique phytotoxin that demonstrates broad spectrum post-emergent herbicidal properties. With limited options for weed control, the commercialization of a natural product pesticide would be beneficial to organic farming. In this study, two mevalocidin-producing fungal strains, coded MSX56446 and MSX92917, were explored under a variety of growth conditions, including time, temperature, and media. The concentration of mevalocidin was quantitatively measured via LC–MS to determine the optimal setting for each condition. Maximum production was achieved for each condition at 20 days, at 30 °C, with YESD + agar, and with a media containing 2.5 % dextrose. Furthermore, an advanced surface sampling technique was incorporated to gain a better understanding of the fungal culture’s natural ability to biosynthesize and distribute this herbicide into its environment. It was shown that both fungi actively exude mevalocidin into their environment via liquid droplet formations known as guttates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ITS:

Internal transcribed spacer

Droplet–LMJ–SSP:

Droplet liquid microjunction surface sampling probe

References

  1. Ayers S, Graf TN, Adcock AF, Kroll DJ, Matthew S, Carcache de Blanco EJ, Shen Q, Swanson SM, Wani MC, Pearce CJ, Oberlies NH (2011) Resorcylic acid lactones with cytotoxic and NF-kappaB inhibitory activities and their structure–activity relationships. J Nat Prod 74:1126–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bills GF, Dombrowski AW, Goetz MA (2012) The “FERMEX” method for metabolite-enriched fungal extracts. Methods Mol Biol 944:79–96

    CAS  PubMed  Google Scholar 

  3. Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources for new pesticides. J Nat Prod 75:1231–1242

    Article  CAS  PubMed  Google Scholar 

  4. Checa J, Arenal F, Blanco N, Rogers JD (2008) Coniolariella hispanica sp. nov. and other additions to Coniolariella. Mycol Res 112:795–801

    Article  PubMed  Google Scholar 

  5. Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  6. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  CAS  PubMed  Google Scholar 

  7. El-Elimat T, Raja HA, Day CS, Chen WL, Swanson SM, Oberlies NH (2014) Greensporones: resorcylic acid lactones from an aquatic halenospora sp. J Nat Prod 77:2088–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH (2014) Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J Nat Prod 77:193–199

    Article  CAS  PubMed  Google Scholar 

  9. Figueroa M, Graf TN, Ayers S, Adcock AF, Kroll DJ, Yang J, Swanson SM, Munoz-Acuna U, de Blanco EJC, Agrawal R, Wani MC, Darveaux BA, Pearce CJ, Oberlies NH (2012) Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J Antibiot 65:559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH (2014) Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 77:1351–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia D, Stchigel AM, Cano J, Calduch M, Hawksworth DL, Guarro J (2006) Molecular phylogeny of Coniochaetales. Mycol Res 110:1271–1289

    Article  CAS  PubMed  Google Scholar 

  12. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  13. Gerwick BC, Brewster WK, deBoer GJ, Fields SC, Graupner PR, Hahn DR, Pearce CJ, Schmitzer PR, Webster JD (2013) Mevalocidin: a novel, phloem mobile phytotoxin from Fusarium DA056446 and Rosellinia DA092917. J Chem Ecol 39:253–261

    Article  CAS  PubMed  Google Scholar 

  14. Gerwick BC, Graupner PR, Fields SC, Schmitzer PR, Brewster WK (2008) Methylidene mevalonates and their use as herbicides. US 7,393,812 B2

  15. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  16. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137

    Article  CAS  PubMed  Google Scholar 

  17. Hoagland RE (2001) Microbial allelochemicals and pathogens as bioherbicidal agents. Weed Technol 15:835–857

    Article  CAS  Google Scholar 

  18. Hutwimmer S, Wang H, Strasser H, Burgstaller W (2010) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia 102:1–10

    Article  CAS  PubMed  Google Scholar 

  19. Johnson WC, Boudreau MA, Davis JW (2013) Combinations of corn gluten meal, clove oil, and sweep cultivation are ineffective for weed control in organic peanut production. Weed Technol 27:417–421

    Article  Google Scholar 

  20. Kertesz V, Paranthaman N, Moench P, Catoire A, Flarakos J, Van Berkel GJ (2014) Liquid microjunction surface sampling of acetaminophen, terfenadine and their metabolites in thin tissue sections. Bioanalysis 6:2599–2606

    Article  CAS  PubMed  Google Scholar 

  21. Kertesz V, Van Berkel GJ (2010) Liquid microjunction surface sampling coupled with high-pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections. Anal Chem 82:5917–5921

    Article  CAS  PubMed  Google Scholar 

  22. Kertesz V, Van Berkel GJ (2013) Automated liquid microjunction surface sampling-HPLC-MS/MS analysis of drugs and metabolites in whole-body thin tissue sections. Bioanalysis 5:819–826

    Article  CAS  PubMed  Google Scholar 

  23. Kertesz V, Van Berkel GJ (2014) Sampling reliability, spatial resolution, spatial precision, and extraction efficiency in droplet-based liquid microjunction surface sampling. Rapid Commun Mass Spectrom 28:1553–1560

    Article  CAS  PubMed  Google Scholar 

  24. Kertesz V, Weiskittel TM, Van Berkel GJ (2015) An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis. Anal Bioanal Chem 407:2117–2125

    Article  CAS  PubMed  Google Scholar 

  25. Oberholtzer L, Dunutru C (2009) Marketing US organic foods: recent trends from farms to consumer. Economic information bulletin, 58. USDA, Washington

    Google Scholar 

  26. Raja HA, Oberlies NH, Figueroa M, Tanaka K, Hirayama K, Hashimoto A, Miller AN, Zelski SE, Shearer CA (2013) Freshwater ascomycetes: Minutisphaera (Dothideomycetes) revisited, including one new species from Japan. Mycologia 105:959–976

    Article  PubMed  Google Scholar 

  27. Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 73:816–823

    Article  Google Scholar 

  28. Schoch CL, Robbertse B, Robert V, Vu D, Cardinali G, Irinyi L, Meyer W, Nilsson RH, Hughes K, Miller AN, Kirk PM, Abarenkov K, Aime MC, Ariyawansa HA, Bidartondo M, Boekhout T, Buyck B, Cai Q, Chen J, Crespo A, Crous PW, Damm U, De Beer ZW, Dentinger BT, Divakar PK, Duenas M, Feau N, Fliegerova K, Garcia MA, Ge ZW, Griffith GW, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Gueidan C, Guo L, Hambleton S, Hamelin R, Hansen K, Hofstetter V, Hong SB, Houbraken J, Hyde KD, Inderbitzin P, Johnston PR, Karunarathna SC, Koljalg U, Kovacs GM, Kraichak E, Krizsan K, Kurtzman CP, Larsson KH, Leavitt S, Letcher PM, Liimatainen K, Liu JK, Lodge DJ, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SS, Manamgoda D, Martin MP, Minnis AM, Moncalvo JM, Mule G, Nakasone KK, Niskanen T, Olariaga I, Papp T, Petkovits T, Pino-Bodas R, Powell MJ, Raja HA, Redecker D, Sarmiento-Ramirez JM, Seifert KA, Shrestha B, Stenroos S, Stielow B, Suh SO, Tanaka K, Tedersoo L, Telleria MT, Udayanga D, Untereiner WA, Dieguez Uribeondo J, Subbarao KV, Vagvolgyi C, Visagie C, Voigt K, Walker DM, Weir BS, Weiss M, Wijayawardene NN, Wingfield MJ, Xu JP, Yang ZL, Zhang N, Zhuang WY, Federhen S (2014) Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi. Database (Oxford) 2014

  29. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, B D, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EB, Kelly LJ, Kirk PM, Knapp DG, Koljalg UGMK, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, T R, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FO, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D, Fungal Barcode Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241–6246

  30. Shrestha A, Moretti M, Mourad N (2012) Evaluation of thermal implements and crganic herbicides for weed control in a nonbearing almond (Prunus dulcis) orchard. Weed Technol 26:110–116

    Article  Google Scholar 

  31. Sica VP, Raja HA, El-Elimat T, Kertesz V, Van Berkel GJ, Pearce CJ, Oberlies NH (2015) Dereplicating and spatial mapping of secondary metabolites from fungal cultures in situ. J Nat Prod 78:1926–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh S (2014) Guttation: quantification, microbiology and implications for phytopathology. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany, vol 75. Springer, Berlin, pp 187–214. doi:10.1007/978-3-642-38797-5_7

    Chapter  Google Scholar 

  33. Swofford DL (2002) PAUP*: phylogenetic analysis using Parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  34. Sy-Cordero AA, Graf TN, Adcock AF, Kroll DJ, Shen Q, Swanson SM, Wani MC, Pearce CJ, Oberlies NH (2011) Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the filamentous fungus Trichothecium sp. (MSX 51320). J Nat Prod 74:2137–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Sena Filho JG, Hoover AR, King JB, Ellis TK, Powell DR, Cichewicz RH (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod 73:942–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322

    Google Scholar 

  37. Willer H, Kilcher L (2011) The world of organic agriculture. Statistics and emerging trends 2011. IFOAM, Bonn

    Google Scholar 

  38. Young SL (2004) Natural product herbicides for control of annual vegetation along roadsides. Weed Technol 18:580–587

    Article  CAS  Google Scholar 

  39. Zare R, Asgari B, Gams W (2010) The species of Coniolariella. Mycologia 102:1383–1388

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grant from the US Department of Agriculture (NIFA 2012-33610-19523). The authors thank T. N. Graf of UNCG for assistance in isolation method development and Drs. Vilmos Kertesz and Gary J. Van Berkel (Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory) for inspiration and guidance with the droplet-LMJ-SSP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cedric J. Pearce or Nicholas H. Oberlies.

Additional information

V. P. Sica and M. Figueroa contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10295_2016_1782_MOESM1_ESM.docx

Phylograms of ITS and 28S rDNA for the fungi utilized in this paper. A flowchart detailing the extraction process. The 1H NMR and MS data for both compounds. The chromatograms confirming the biosynthesis of both compounds. This material is available free of charge via the Internet at http://pubs.acs.org (DOCX 1161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sica, V.P., Figueroa, M., Raja, H.A. et al. Optimizing production and evaluating biosynthesis in situ of a herbicidal compound, mevalocidin, from Coniolariella sp.. J Ind Microbiol Biotechnol 43, 1149–1157 (2016). https://doi.org/10.1007/s10295-016-1782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1782-2

Keywords

Navigation