Skip to main content

Advertisement

Log in

Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Recently, bioelectrochemical systems have been demonstrated as advantageous for denitrification. Here, we investigated the nitrate reduction rate and bacterial community on cathodes at different cathode potentials [−300, −500, −700, and −900 mV vs. standard hydrogen electrode (SHE)] in a two-chamber microbial electrochemical denitrification system and effects of sulfate, a common nitrate co-contaminant, on denitrification efficiency. The results indicated that the highest nitrate reduction rates (3.5 mg L−1 days−1) were obtained at a cathode potential of −700 mV, regardless of sulfate presence, while a lower rate was observed at a more negative cathode potential (−900 mV). Notably, although sulfate ions generally inhibited nitrate reduction, this effect was absent at a cathode potential of −700 mV. Polymerase chain reaction–denaturing gradient gel electrophoresis revealed that bacterial communities on the graphite-felt cathode were significantly affected by the cathode potential change and sulfate presence. Shinella-like and Alicycliphilus-like bacterial species were exclusively observed on cathodes in reactors without sulfate. Ochrobactrum-like and Sinorhizobium-like bacterial species, which persisted at different cathode potentials irrespective of sulfate presence, were shown to contribute to bioelectrochemical denitrification. This study suggested that a cathode potential of around −700 mV versus SHE would ensure optimal nitrate reduction rate and counteract inhibitory effects of sulfate. Additionally, sulfate presence considerably affects denitrification efficiency and microbial community of microbial electrochemical denitrification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  2. Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S (2008) Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol 42:6185–6190

    Article  CAS  PubMed  Google Scholar 

  3. Aulenta F, Reale P, Catervi A, Panero S, Majone M (2008) Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim Acta 53:5300–5305. doi:10.1016/j.electacta.2008.02.084

    Article  CAS  Google Scholar 

  4. Baalsrud K, Baalsrud KS (1954) Studies on thiobacillus denitrificans. Arch Mikrobiol 20:34–62. doi:10.1007/BF00412265

    Article  CAS  PubMed  Google Scholar 

  5. Cheng KY, Ginige MP, Kaksonen AH (2012) Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and cathodic denitrification. Environ Sci Technol 46:10372–10378. doi:10.1021/es3025066

    CAS  PubMed  Google Scholar 

  6. Coma M, Puig S, Pous N, Balaguer MD, Colprim J (2013) Biocatalysed sulphate removal in a BES cathode. Bioresour Technol 130:218–223. doi:10.1016/j.biortech.2012.12.050

    Article  CAS  PubMed  Google Scholar 

  7. Cong Y, Xu Q, Feng H, Shen D (2013) Efficient electrochemically active biofilm denitrification and bacteria consortium analysis. Bioresour Technol 132:24–27. doi:10.1016/j.biortech.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  8. Doan VT, Lee TK, Shukla SK, Tiedje JM, Park J (2013) Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: kinetics and expression of denitrification pathway genes. Water Res 47:7087–7097. doi:10.1016/j.watres.2013.08.041

    Article  PubMed  Google Scholar 

  9. Feleke Z, Sakakibara Y (2002) A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. Water Res 36:3092–3102

    Article  CAS  PubMed  Google Scholar 

  10. Feng H, Huang B, Zou Y, Li N, Wang M, Yin J, Cong Y, Shen D (2013) The effect of carbon sources on nitrogen removal performance in bioelectrochemical systems. Bioresour Technol 128:565–570. doi:10.1016/j.biortech.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Franson MAH, Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washinton

    Google Scholar 

  12. Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater: a review. Bioresour Technol 99:3965–3974. doi:10.1016/j.biortech.2007.05.026

    Article  CAS  PubMed  Google Scholar 

  13. Hao R, Li S, Li J, Meng C (2013) Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community. Bioresour Technol 143:178–186. doi:10.1016/j.biortech.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  14. Huang B, Feng H, Wang M, Li N, Cong Y, Shen D (2013) The effect of C/N ratio on nitrogen removal in a bioelectrochemical system. Bioresour Technol 132:91–98. doi:10.1016/j.biortech.2012.12.192

    Article  CAS  PubMed  Google Scholar 

  15. Jones CM, Stres B, Rosenquist M, Hallin S (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 25:1955–1966. doi:10.1093/molbev/msn146

    Article  CAS  PubMed  Google Scholar 

  16. Karanasios K, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37. doi:10.1016/j.jhazmat.2010.04.090

    Article  CAS  PubMed  Google Scholar 

  17. Kondaveeti S, Min B (2013) Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess Biosyst Eng 36:231–238. doi:10.1007/s00449-012-0779-0

    Article  CAS  PubMed  Google Scholar 

  18. Lai A, Verdini R, Aulenta F, Majone M (2015) Influence of nitrate and sulfate reduction in the bioelectrochemically assisted dechlorination of cis-DCE. Chemosphere 125:147–154. doi:10.1016/j.chemosphere.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  19. Mook WT, Aroua MKT, Chakrabarti MH, Noor IM, Irfan MF, Low CTJ (2012) A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems. J Ind Eng Chem 19:1–13. doi:10.1016/j.jiec.2012.07.004

    Article  Google Scholar 

  20. Mousavi S, Ibrahim S, Aroua MK, Ghafari S (2012) Development of nitrate elimination by autohydrogenotrophic bacteria in bio-electrochemical reactors: a review. Biochem Eng J 67:251–264. doi:10.1016/j.bej.2012.04.016

    Article  CAS  Google Scholar 

  21. Mousavi SAR, Ibrahim S, Aroua MK, Ghafari S (2011) Bio-electrochemical denitrification: a review. Int J Chem Environ Eng 2:140–146

    CAS  Google Scholar 

  22. Nguyen VK, Hong S, Park Y, Jo K, Lee T (2014) Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes. J Biosci Bioeng 119:180–187. doi:10.1016/j.jbiosc.2014.06.016

    Article  PubMed  Google Scholar 

  23. Pan Y, Ni B-J, Bond PL, Ye L, Yuan Z (2013) Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47:3273–3281. doi:10.1016/j.watres.2013.02.054

    Article  CAS  PubMed  Google Scholar 

  24. Pous N, Puig S, Coma M, Balaguer MD, Colprim J (2013) Bioremediation of nitrate-polluted groundwater in a microbial fuel cell. J Chem Technol Biotechnol 88:1690–1696. doi:10.1002/jctb.4020

    Article  CAS  Google Scholar 

  25. Pous N, Puig S, Dolors Balaguer M, Colprim J (2015) Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems. Chem Eng J 263:151–159. doi:10.1016/j.cej.2014.11.002

    Article  CAS  Google Scholar 

  26. Ra R, Aw J, Hvm H, Cjn B (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  Google Scholar 

  27. Su W, Zhang L, Li D, Zhan G, Qian J, Tao Y (2012) Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol Bioeng 109:2904–2910. doi:10.1002/bit.24554

    Article  CAS  PubMed  Google Scholar 

  28. Tong S, Zhang B, Feng C, Zhao Y, Chen N, Hao C, Pu J, Zhao L (2013) Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater. Bioresour Technol 148:121–127. doi:10.1016/j.biortech.2013.08.146

    Article  CAS  PubMed  Google Scholar 

  29. Tong Y, He Z (2013) Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system. J Hazard Mater 262:614–619. doi:10.1016/j.jhazmat.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  30. Virdis B, Rabaey K, Yuan Z, Rozendal RA, Keller J (2009) Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. Environ Sci Technol 43:5144–5149

    Article  CAS  PubMed  Google Scholar 

  31. WHO (2011) Nitrate and nitrite in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality

  32. Wan D, Liu H, Qu J, Lei P, Xiao S, Hou Y (2009) Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification. Bioresour Technol 100:142–148. doi:10.1016/j.biortech.2008.05.042

    Article  CAS  PubMed  Google Scholar 

  33. Xie D, Yu H, Li C, Ren Y, Wei C, Feng C (2014) Competitive microbial reduction of perchlorate and nitrate with a cathode directly serving as the electron donor. Electrochim Acta 133:217–223. doi:10.1016/j.electacta.2014.04.016

    Article  CAS  Google Scholar 

  34. Zhang L, Tao Y, Li D, Zhan G, Su W, Li D (2012) Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems. Electrochem Commun 22:37–40. doi:10.1016/j.elecom.2012.04.030

    Article  Google Scholar 

  35. Zhang W, Zhang Y, Su W, Jiang Y, Su M, Gao P, Li D (2014) Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems. J Environ Sci (China) 26:885–891. doi:10.1016/S1001-0742(13)60460-X

    Article  CAS  Google Scholar 

  36. Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N (2011) Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J Hazard Mater 192:1033–1039. doi:10.1016/j.jhazmat.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Y, Zhang B, Feng C, Huang F, Zhang P, Zhang Z, Yang Y, Sugiura N (2012) Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment. Bioresour Technol 107:159–165. doi:10.1016/j.biortech.2011.12.118

    Article  CAS  PubMed  Google Scholar 

  38. Zhou M, Fu W, Gu H, Lei L (2007) Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochim Acta 52:6052–6059. doi:10.1016/j.electacta.2007.03.064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2015R1A2A1A15054528), and the Brain Korea 21 Plus Project in the Division of Creative Low Impact Development and Management for Ocean Port City Infrastructures (21A20132012304). The assistance of Mr. Chaeho Im at the Bioenergy and Bioprocess Laboratory, Department of Polymer Science and Chemical Engineering in gas chromatography operation is also acknowledged. The authors also wish to thank Ms. Yura Kim for her moral support during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeho Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.K., Park, Y., Yang, H. et al. Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system. J Ind Microbiol Biotechnol 43, 783–793 (2016). https://doi.org/10.1007/s10295-016-1762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1762-6

Keywords

Navigation