Skip to main content
Log in

High-throughput screening of high Monascus pigment-producing strain based on digital image processing

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This work proposed a new method which applied image processing and support vector machine (SVM) for screening of mold strains. Taking Monascus as example, morphological characteristics of Monascus colony were quantified by image processing. And the association between the characteristics and pigment production capability was determined by SVM. On this basis, a highly automated screening strategy was achieved. The accuracy of the proposed strategy is 80.6 %, which is compatible with the existing methods (81.1 % for microplate and 85.4 % for flask). Meanwhile, the screening of 500 colonies only takes 20–30 min, which is the highest rate among all published results. By applying this automated method, 13 strains with high-predicted production were obtained and the best one produced as 2.8-fold (226 U/mL) of pigment and 1.9-fold (51 mg/L) of lovastatin compared with the parent strain. The current study provides us with an effective and promising method for strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dobson LF, O’Cleirigh CC, O’Shea DG (2008) The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Appl Microbiol Biotechnol 79(5):859–866. doi:10.1007/s00253-008-1493-3

  2. Elmayergi H, Scharer J, Moo-Young M (1973) Effects of polymer additives on fermentation parameters in a culture of A. niger. Biotechnol Bioeng 15(5):845–859. doi:10.1002/bit.260150503

    Article  CAS  Google Scholar 

  3. Ford A, Roberts A (1998) Colour space conversions. Westminster University, London, pp 1–31. http://147.228.63.6/research/night_road/westminster.pdf. Accessed 9 Jan 2016

  4. Fu YQ, Yin LF, Jiang R et al (2015) Effects of calcium on the morphology of Rhizopus oryzae and l-lactic acid production. In: Advances in applied biotechnology. Springer, Berlin, pp 233–243

  5. General T, Prasad B, Kim HJ et al (2014) Saccharina japonica, a potential feedstock for pigment production using submerged fermentation. Biotechnol Bioprocess 19(4):711–719. doi:10.1007/s12257-013-0709-2

    Article  CAS  Google Scholar 

  6. Ha M, Yang Y, Wang C (2013) A new support vector machine based on type-2 fuzzy samples. Soft Comput 17(11):2065–2074. doi:10.1007/s00500-013-1122-7

    Article  Google Scholar 

  7. Hama S, Onodera K, Yoshida A et al (2005) Improved production of phospholipase A 1 by recombinant Aspergillus oryzae through immobilization to control the fungal morphology under nutrient-limited conditions. Biochem Eng J 96:1–6. doi:10.1016/j.bej.2014.12.013

    Article  Google Scholar 

  8. He Y, Shao Y, Chen F (2014) Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway. Fungal Biol 118:846–854. doi:10.1016/j.funbio.2014.07.003

  9. Hirayama E, Sugiyama T, Hisamoto H et al (2000) Visual and colorimetric lithium ion sensing based on digital color analysis. Anal Chem 72(3):465–474. doi:10.1021/ac990588w

  10. Jones C, Lonergan G, Mainwaring D (1995) Acid phosphatase positional correlations in solid surface fungal cultivation: a fractal interpretation of biochemical differentiation. Biochem Biophys Res Commun 208(3):1159–1165. doi:10.1006/bbrc.1995.1455

    Article  CAS  PubMed  Google Scholar 

  11. Kumar MS, Kumar PM, Sarnaik HM et al (2000) A rapid technique for screening of lovastatin-producing strains of Aspergillus terreus by agar plug and Neurospora crassa bioassay. J Microbiol Methods 40(1):99–104. doi:10.1016/S0167-7012(99)00135-9

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Fang H, Chen Z (2014) A novel cost function based on decomposing least-square support vector machine for Takagi-Sugeno fuzzy system identification. IET Control Theory Appl 8(5):338–347. doi:10.1049/iet-cta.2013.0707

    Article  CAS  Google Scholar 

  13. Liu Y, Li R, Li C et al (2014) Application of BP neural network and support vector machine to the accumulated temperature interpolation. J Arid Land Resour Environ 28(5):158–165

    Google Scholar 

  14. McIntyre M, Müller C, Dynesen J et al (2001) Metabolic engineering of the morphology of Aspergillus. Metab Eng 73:103–128. doi:10.1007/3-540-45300-8_6

    Article  CAS  Google Scholar 

  15. Mostafa ME, Abbady MS (2014) Secondary metabolites and bioactivity of the Monascus pigments review article. Global J Biotechnol Biochem 9:1–13. http://idosi.org/gjbb/gjbb9(1)14/1.pdf. Accessed 9 Jan 2016

  16. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259. doi:10.1016/j.biotechadv.2003.09.005

  17. Pohn B, Gerlach J, Scheideler M et al (2007) Micro-colony array based high throughput platform for enzyme library screening. J Biotechnol 129(1):162–170. doi:10.1016/j.jbiotec.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  18. Rajwa B, Venkatapathi M, Ragheb K et al (2008) Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier. Cytom Part A 73:369–379. doi:10.1002/cyto.a.20515

    Article  Google Scholar 

  19. Tan J, Chu J, Wang Y et al (2014) High-throughput system for screening of Monascus purpureus high-yield strain in pigment production. Bioresour Bioprocess 1(1):1–7. doi:10.1186/s40643-014-0016-6

    Article  Google Scholar 

  20. Treskatis SK, Orgeldinger V, Wolf H et al (1997) Morphological characterization of filamentous microorganisms in submerged cultures by on-line digital image analysis and pattern recognition. Biotechnol Bioeng 53(2):191–201. doi:10.1002/(SICI)1097-0290(19970120)53:2<191:AID-BIT9>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  21. Viscarra Rossel RA, Minasny B, Roudier P et al (2006) Colour space models for soil science. Geoderma 133(3–4):320–337. doi:10.1016/j.geoderma.2005.07.017

    Article  CAS  Google Scholar 

  22. Wang JJ, Lee CL, Pan TM (2004) Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem 52(23):6977–6982. doi:10.1021/jf049783o

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Bai Z, Yang P (2014) Simulation and prediction of ion transport in the reclamation of sodic soils with gypsum based on the support vector machine. Sci World J. doi:10.1155/2014/805342

    Google Scholar 

  24. Wimpenny J, Wilkinson T, Peters A (1995) Monitoring microbial colony growth using image-analysis techniques. Binary-Comput Microb 7(1):14–18

    Google Scholar 

  25. Wongjewboot I, Kongruang S (2011) pH stability of ultrasonic Thai isolated Monascus purpureus pigments. Int J Biosci Biochem Bioinforma 1:79–83

    Google Scholar 

  26. Yang K, Wang JF, Li XJ et al (2001) Strain selection of Metarrhizium anisopliae by image analysis of colony morphology for consistency of steroid biotransformation. Biotechnol Bioeng 75(1):53–62. doi:10.1002/bit.1164

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Wang YL, Lu LP et al (2014) Enhanced production of Monacolin K by addition of precursors and surfactants in submerged fermentation of Monascus purpureus 9901. Biotechnol Appl Biochem 61(2):202–207. doi:10.1002/bab.1154

    Article  CAS  PubMed  Google Scholar 

  28. Zhao QH, Ha MH, Peng GB et al (2009) Support vector machine based on half-suppressed fuzzy c-means clustering. In: Machine learning and cybernetics, 2009 international conference on 2009. IEEE, pp 1236–1240. doi:10.1109/ICMLC.2009.5212363

  29. Zhu K, Song X, Xue D (2014) A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm. Measurement 47:669–675. doi:10.1016/j.measurement.2013.09.019

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Open Funding Project of the National Key Laboratory of Biochemical Engineering (No. 2013KF-01), and the National High Technology Research and Development Program (863 Program, 2012AA021302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-zhang Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Ml., Wang, L., Yang, Zx. et al. High-throughput screening of high Monascus pigment-producing strain based on digital image processing. J Ind Microbiol Biotechnol 43, 451–461 (2016). https://doi.org/10.1007/s10295-015-1729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1729-z

Keywords

Navigation