Skip to main content
Log in

Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics

  • Natural Products
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Microbial-induced calcium carbonate precipitation has been identified as a novel method to improve durability and remediate cracks in concrete. One way to introduce microorganisms to concrete is by replacing the mixing water with a bacterial culture in nutrient medium. In the literature, yeast extract often has been used as a carbon source for this application; however, severe retardation of hydration kinetics has been observed when yeast extract is added to cement. This study investigates the suitability of alternative carbon sources to replace yeast extract for microbial-induced calcium carbonate precipitation in cement-based materials. A combination of meat extract and sodium acetate was identified as a suitable replacement in growth medium for Sporosarcina pasteurii; this alternative growth medium reduced retardation by 75 % (as compared to yeast extract) without compromising bacterial growth, urea hydrolysis, cell zeta potential, and ability to promote calcium carbonate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Exchange rate: 1 USD = 0.92 €.

References

  1. Achal V, Mukerjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5. doi:10.1016/j.conbuildmat.2013.06.061

    Article  Google Scholar 

  2. Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36:433–438. doi:10.1007/s10295-008-0514-7

    Article  CAS  PubMed  Google Scholar 

  3. Achal V, Mukherjee A, Reddy MS (2010) Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source. Ind Biotechnol 6:170–174. doi:10.1089/ind.2010.6.170

    Article  Google Scholar 

  4. ASTM International (2012) ASTM D1252 Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water. ASTM International, West Conshohocken

    Google Scholar 

  5. Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409. doi:10.1016/S0141-0229(00)00348-3

    Article  CAS  PubMed  Google Scholar 

  6. Basaran Z (2013) Biomineralization of cement based materials: inoculation of vegetative cells. The University of Texas at Austin, Austin

    Google Scholar 

  7. Buchanan RE et al (1974) Bergey’s manual of determinative bacteriology, 8th edn. The Williams and Wilkin Company, Baltimore

    Google Scholar 

  8. Bundeleva I et al (2011) Zeta potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: possible implications for cell protection from CaCO3 precipitation in alkaline solutions. J Colloid Interface Sci 360:100–109. doi:10.1016/j.jcis.2011.04.033

    Article  CAS  PubMed  Google Scholar 

  9. Bundur ZB, Kirisits MJ, Ferron RD (2015) Biomineralized cement-based materials: impact of inoculating vegetative bacterial cells on hydration and strength. Cement Concr Res 67:237–245. doi:10.1016/j.cemconres.2014.10.002

    Article  Google Scholar 

  10. Claus GW (1988) Understanding microbes: a laboratory textbook for microbiology. WH Freeman, New York

    Google Scholar 

  11. Connelly L (2011) T-tests. MEDSURG Nurs 20:341

    PubMed  Google Scholar 

  12. De Muynck W, Cox K, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875–885. doi:10.1016/j.conbuildmat.2006.12.011

    Article  Google Scholar 

  13. De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concr Res 38:1005–1014. doi:10.1016/j.cemconres.2008.03.005

    Article  Google Scholar 

  14. Dhami NK, Reddy MS, Mukherjee A (2013) Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World J Microbiol Biotechnol 29:2397–2406. doi:10.1007/s11274-013-1408-z

    Article  CAS  PubMed  Google Scholar 

  15. Fletcher M (1996) Bacterial adhesion: molecular and ecological diversity. Wiley, Hoboken

    Google Scholar 

  16. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7. doi:10.1023/A:1015135629155

    Article  CAS  Google Scholar 

  17. Harden VP, Harris JO (1953) The isoelectric point of bacterial cells. J Bacteriol 65:198–202

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Head RB, Sutherland KL (1960) Heterogeneous nucleation by aggregates of particles. Aust J Phys 13:584–598

    Article  Google Scholar 

  19. Hubbard C, Snyder R (1988) RIR—measurement and use in quantitative XRD. Powder Diffr 3:74–77

    Article  CAS  Google Scholar 

  20. Jonkers HM et al (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235. doi:10.1016/j.ecoleng.2008.12.036

    Article  Google Scholar 

  21. Kłodzińska E et al (2010) Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophor 31:1590–1596. doi:10.1002/elps.200900559

    Article  Google Scholar 

  22. Lee P, Misran M, Wan Abdullah W (2011) Effects of Joule heating on electrophoretic mobility of titanium dioxide (TiO2), Escherichia coli and Staphylococcus aureus (live and dead). IFMBE Proc 35:60–68. doi:10.1007/978-3-642-21729-6_20

    Article  CAS  Google Scholar 

  23. Lee T (1998) Surface characterization by heterogeneous nucleation from the vapor. Harvard University, Cambridge

    Google Scholar 

  24. Mitchell AC, Ferris FG (2006) The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiol J 23:213–226. doi:10.1080/01490450600724233

    Article  CAS  Google Scholar 

  25. NIST/SEMATECH (2003) 1.3.6.7.2. Critical Values of the Student’s t Distribution. In: e-Handbook of Statistical Methods. National Institute of Standards and Technology, Gaithersburg. Available via DIALOG. http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm. Accessed 4 Jan 2016

  26. Olson E (2012) Zeta potential and colloid chemistry. J GXP Compliance 1:81–96

    Google Scholar 

  27. Paulson D (1999) Topical antimicrobial testing and evaluation. Marcel Dekker Inc, New York

    Google Scholar 

  28. Ricca E, Cutting S (2003) Emerging applications of bacterial spores in nanobiotechnology. J Nanobiotechnol. doi:10.1186/1477-3155-1-6

    Google Scholar 

  29. Sarda D, Choonia HS, Sarode DD, Lele SS (2009) Biocalcification by Bacillus pasteurii urease: a novel application. J Ind Microbiol Biotechnol 36:1111–1115. doi:10.1007/s10295-009-0581-4

    Article  CAS  PubMed  Google Scholar 

  30. Silva FB, Boon N, De Belie N, Verstraete W (2015) Industrial application of biological self-healing concrete: challenges and economic feasibility. J Commer Biotechnol 21:31–38

    Google Scholar 

  31. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571. doi:10.1016/S0038-0717(99)00082-6

    Article  CAS  Google Scholar 

  32. Suprenant B, Malisch W (2000) The cost of waiting: Concrete contractors can lose big money when delayed concrete setting sidelines finishers. Concrete Construction, June 2000

  33. Thomas N, Birchall J (1983) The retarding action of sugars on cement hydration. Cement Concr Res 13:830–842. doi:10.1016/0008-8846(83)90084-4

    Article  CAS  Google Scholar 

  34. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cement Concr Res 40:157–166. doi:10.1016/j.cemconres.2009.08.025

    Article  Google Scholar 

  35. Wang J, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577. doi:10.1007/s10295-011-1037-1

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Soens H, Verstraete W, De Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cement Concr Res 56:139–152. doi:10.1016/j.cemconres.2013.11.009

    Article  CAS  Google Scholar 

  37. Weerkamp AH, Uyen HM, Busscher HJ (1988) Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J Dent Res 67:1483–1487. doi:10.1177/00220345880670120801

    Article  CAS  PubMed  Google Scholar 

  38. Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concr Compos 33:763–770. doi:10.1016/j.cemconcomp.2011.03.012

    Article  CAS  Google Scholar 

  39. Williams SL, Kirisits MJ, Ferron RD (2015) Characterization of live, dead, starved, and heat-treated Sporosarcina pasteurii cells: implications for biomineralization in construction materials. In: Proceedings of the First International Conference on Bio-based Building Materials (ICBBM), Clermont-Ferrand, France

  40. Wilson WW, Wade MM, Holman SC, Champlin FR (2001) Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43:153–164. doi:10.1016/S0167-7012(00)00224-4

    Article  CAS  PubMed  Google Scholar 

  41. Winston Liggett R, Koffler H (1948) Corn Steep Liquor in Microbiology. Bacteriol Rev 12:297–311

    Google Scholar 

  42. Zhang B, Bundur Z, Mondal P, Ferron R (2015) Use of biomineralization in developing smart concrete inspired by nature. Int J Mater Struct Integr 9:39–60. doi:10.1504/IJMSI.2015.071109

    Article  Google Scholar 

  43. Zhang J, Scherer GW (2011) Comparison of methods for arresting hydration of cement. Cement Concr Res 41:1024–1036. doi:10.1016/j.cemconres.2011.06.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Brewster Dairy, Inc. for donating the lactose mother liquor used in this study. Stephanie Chu is acknowledged for her help with the calorimetry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raissa Douglas Ferron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, S.L., Kirisits, M.J. & Ferron, R.D. Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics. J Ind Microbiol Biotechnol 43, 567–575 (2016). https://doi.org/10.1007/s10295-015-1726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1726-2

Keywords

Navigation