Skip to main content
Log in

Natural products as probes in pharmaceutical research

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

From the start of the pharmaceutical research natural products played a key role in drug discovery and development. Over time many discoveries of fundamental new biology were triggered by the unique biological activity of natural products. Unprecedented chemical structures, novel chemotypes, often pave the way to investigate new biology and to explore new pathways and targets. This review summarizes the recent results in the area with a focus on research done in the laboratories of Novartis Institutes for BioMedical Research. We aim to put the technological advances in target identification techniques in the context to the current revival of phenotypic screening and the increasingly complex biological questions related to drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S et al (2015) (−)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed Engl 54:3787–3791. doi:10.1002/anie.201411511

    Article  CAS  PubMed  Google Scholar 

  2. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. doi:10.1038/nature11003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897. doi:10.1038/nrd3248

    Article  CAS  PubMed  Google Scholar 

  4. Brotz-Oesterhelt H, Sass P (2014) Bacterial caseinolytic proteases as novel targets for antibacterial treatment. Int J Med Microbiol 304:23–30. doi:10.1016/j.ijmm.2013.09.001

    Article  PubMed  Google Scholar 

  5. Buerstner N, Roggo S, Ostermann N, Blank J, Delmas C, Freuler F, Gerhartz B, Hinniger A, Hoepfner D, Liechty B et al (2015) Gift from nature: cyclomarin A kills mycobacteria and malaria parasites using distinct modes of action. ChemBioChem. doi:10.1002/cbic.201500472

    Google Scholar 

  6. Burgett AW, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C, Shimada K, Okubo S, Fortner KC, Mimaki Y, Kuroda M et al (2011) Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 7:639–647. doi:10.1038/nchembio.625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Carson C, Raman P, Tullai J, Xu L, Henault M, Thomas E, Yeola S, Lao J, McPate M, Verkuyl JM et al (2015) Englerin A agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation. PLoS ONE 10:e0127498. doi:10.1371/journal.pone.0127498

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chu J, Pelletier J (2014) Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2014.09.006

    Google Scholar 

  9. Cully M (2014) Trial watch: next-generation antimalarial from phenotypic screen shows clinical promise. Nat Rev Drug Discov 13:717. doi:10.1038/nrd4457

    Article  CAS  PubMed  Google Scholar 

  10. Dantal J (2012) Everolimus: preventing organ rejection in adult kidney transplant recipients. Expert Opin Pharmacother 13:767–778. doi:10.1517/14656566.2012.662955

    Article  CAS  PubMed  Google Scholar 

  11. de Lichtervelde L, Antal CE, Boitano AE, Wang Y, Krastel P, Petersen F, Newton AC, Cooke MP, Schultz PG (2012) Euphohelioscopin A is a PKC activator capable of inducing macrophage differentiation. Chem Biol 19:994–1000. doi:10.1016/j.chembiol.2012.06.010

    Article  PubMed Central  PubMed  Google Scholar 

  12. Eder J, Sedrani R, Wiesmann C (2014) The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov 13:577–587. doi:10.1038/nrd4336

    Article  CAS  PubMed  Google Scholar 

  13. Ferrari P, Vekey K, Galimberti M, Gallo GG, Selva E, Zerilli LF (1996) Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. II. Structure elucidation. J Antibiot 49:150–154

    Article  CAS  PubMed  Google Scholar 

  14. Gao W, Kim JY, Anderson JR, Akopian T, Hong S, Jin YY, Kandror O, Kim JW, Lee IA, Lee SY et al (2015) The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother 59:880–889. doi:10.1128/AAC.04054-14

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gao W, Kim JY, Chen SN, Cho SH, Choi J, Jaki BU, Jin YY, Lankin DC, Lee JE, Lee SY et al (2014) Discovery and characterization of the tuberculosis drug lead ecumicin. Org Lett 16:6044–6047. doi:10.1021/ol5026603

    Article  CAS  PubMed  Google Scholar 

  16. Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astromoff A, Davis RW (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21:278–283. doi:10.1038/6791

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg EL, Romero-Aleshire MJ, Renkema KR, Ventevogel MS, Chew WM, Uhrlaub JL, Smithey MJ, Limesand KH, Sempowski GD, Brooks HL et al (2015) Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms. Aging Cell 14:130–138. doi:10.1111/acel.12280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. doi:10.1038/nature08221

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Hassan AQ, Kirby CA, Zhou W, Schuhmann T, Kityk R, Kipp DR, Baird J, Chen J, Chen Y, Chung F et al (2015) The novolactone natural product disrupts the allosteric regulation of Hsp70. Chem Biol 22:87–97. doi:10.1016/j.chembiol.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  20. Hasskarl J (2014) Everolimus. Recent Results Cancer Res 201:373–392. doi:10.1007/978-3-642-54490-3_23

    Article  CAS  PubMed  Google Scholar 

  21. Hausenloy DJ, Boston-Griffiths EA, Yellon DM (2012) Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent. Br J Pharmacol 165:1235–1245. doi:10.1111/j.1476-5381.2011.01700.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hirt SW, Bara C, Barten MJ, Deuse T, Doesch AO, Kaczmarek I, Schulz U, Stypmann J, Haneya A, Lehmkuhl HB (2013) Everolimus in heart transplantation: an update. J Transplant 2013:683964. doi:10.1155/2013/683964

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hoepfner D, Helliwell SB, Sadlish H, Schuierer S, Filipuzzi I, Brachat S, Bhullar B, Plikat U, Abraham Y, Altorfer M et al (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169:107–120. doi:10.1016/j.micres.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Hoepfner D, McNamara CW, Lim CS, Studer C, Riedl R, Aust T, McCormack SL, Plouffe DM, Meister S, Schuierer S et al (2012) Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe 11:654–663. doi:10.1016/j.chom.2012.04.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hoffmann H, Kogler H, Heyse W, Matter H, Caspers M, Schummer D, Klemke-Jahn C, Bauer A, Penarier G, Debussche L et al (2015) Discovery, structure elucidation, and biological characterization of nannocystin A, a macrocyclic myxobacterial metabolite with potent antiproliferative properties. Angew Chem Int Ed Engl 54(35):10145–10148. doi:10.1002/anie.201411377

    Article  CAS  PubMed  Google Scholar 

  26. Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi MA, Sharma A (2015) Structure of prolyl-tRNA synthetase-halofuginone complex provides basis for development of drugs against malaria and toxoplasmosis. Structure 23:819–829. doi:10.1016/j.str.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  27. Junne T, Wong J, Studer C, Aust T, Bauer BW, Beibel M, Bhullar B, Bruccoleri R, Eichenberger J, Estoppey D et al (2015) Decatransin, a new natural product inhibiting protein translocation at the Sec61/SecYEG translocon. J Cell Sci 128:1217–1229. doi:10.1242/jcs.165746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, Kim YJ, Lee HK, Cortese JF, Wirth DF et al (2012) Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol 8:311–317. doi:10.1038/nchembio.790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Khan S, Sharma A, Belrhali H, Yogavel M, Sharma A (2014) Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. J Struct Funct Genomics 15:63–71. doi:10.1007/s10969-014-9182-1

    Article  CAS  PubMed  Google Scholar 

  30. Krastel P, Roggo S, Schirle M, Ross NT, Perruccio F, Aspesi P Jr, Aust T, Buntin K, Estoppey D, Liechty B et al (2015) Nannocystin A: an elongation factor 1 inhibitor from myxobacteria with differential anti-cancer properties. Angew Chem Int Ed Engl 54:10149–10154. doi:10.1002/anie.201505069

    Article  CAS  PubMed  Google Scholar 

  31. Kurabachew M, Lu SH, Krastel P, Schmitt EK, Suresh BL, Goh A, Knox JE, Ma NL, Jiricek J, Beer D et al (2008) Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis. J Antimicrob Chemother 62:713–719. doi:10.1093/jac/dkn269

    Article  CAS  PubMed  Google Scholar 

  32. Lai K, Selinger DW, Solomon JM, Wu H, Schmitt E, Serluca FC, Curtis D, Benson JD (2013) Integrated compound profiling screens identify the mitochondrial electron transport chain as the molecular target of the natural products manassantin, sesquicillin, and arctigenin. ACS Chem Biol 8:257–267. doi:10.1021/cb300495e

    Article  CAS  PubMed  Google Scholar 

  33. LaMarche MJ, Leeds JA, Amaral A, Brewer JT, Bushell SM, Deng G, Dewhurst JM, Ding J, Dzink-Fox J, Gamber G et al (2012) Discovery of LFF571: an investigational agent for Clostridium difficile infection. J Med Chem 55:2376–2387. doi:10.1021/jm201685h

    Article  CAS  PubMed  Google Scholar 

  34. LaMarche MJ, Leeds JA, Dzink-Fox J, Gangl E, Krastel P, Neckermann G, Palestrant D, Patane MA, Rann EM, Tiamfook S et al (2012) Antibiotic optimization and chemical structure stabilization of thiomuracin A. J Med Chem 55:6934–6941. doi:10.1021/jm300783c

    Article  CAS  PubMed  Google Scholar 

  35. Leeds JA, Sachdeva M, Mullin S, Dzink-Fox J, Lamarche MJ (2012) Mechanism of action of and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob Agents Chemother 56:4463–4465. doi:10.1128/AAC.06354-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Leeds JA, Schmitt EK, Krastel P (2006) Recent developments in antibacterial drug discovery: microbe-derived natural products–from collection to the clinic. Expert Opin Investig Drugs 15:211–226. doi:10.1517/13543784.15.3.211

    Article  CAS  PubMed  Google Scholar 

  37. Leong FJ, Li R, Jain JP, Lefevre G, Magnusson B, Diagana TT, Pertel P (2014) A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel antimalarial Spiroindolone KAE609 (Cipargamin) to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother 58:6209–6214. doi:10.1128/AAC.03393-14

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mackinnon AL, Paavilainen VO, Sharma A, Hegde RS, Taunton J (2014) An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate. Elife 3:e01483. doi:10.7554/eLife.01483

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. doi:10.1038/nmeth.2649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT, Kovarik J, Carson S et al (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6:268ra179. doi:10.1126/scitranslmed.3009892

    Article  PubMed  Google Scholar 

  41. Morris RP, Leeds JA, Naegeli HU, Oberer L, Memmert K, Weber E, LaMarche MJ, Parker CN, Burrer N, Esterow S et al (2009) Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J Am Chem Soc 131:5946–5955. doi:10.1021/ja900488a

    Article  CAS  PubMed  Google Scholar 

  42. Mullane K, Lee C, Bressler A, Buitrago M, Weiss K, Dabovic K, Praestgaard J, Leeds JA, Blais J, Pertel P (2015) Multicenter, randomized clinical trial to compare the safety and efficacy of LFF571 and vancomycin for Clostridium difficile infections. Antimicrob Agents Chemother 59:1435–1440. doi:10.1128/AAC.04251-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, Deng G, Caughlan RE, Woods AL, Jones AK et al (2012) Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS ONE 7:e42657. doi:10.1371/journal.pone.0042657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi:10.1038/nrd2201

    Article  CAS  PubMed  Google Scholar 

  45. Petersen F (2006) Natural product research at Novartis Pharmaceuticals - a historical overview. In: Engel G, Herrling P (eds) Exploring the frontiers—in celebration of Albert Hofmann’s 100th birthday. Schwabe, Basel, pp 28–73

    Google Scholar 

  46. Powers MV, Clarke PA, Workman P (2008) Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14:250–262. doi:10.1016/j.ccr.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  47. Roemer T, Davies J, Giaever G, Nislow C (2012) Bugs, drugs and chemical genomics. Nat Chem Biol 8:46–56. doi:10.1038/nchembio.744

    Article  CAS  Google Scholar 

  48. Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J et al (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–1180. doi:10.1126/science.1193225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sadlish H, Galicia-Vazquez G, Paris CG, Aust T, Bhullar B, Chang L, Helliwell SB, Hoepfner D, Knapp B, Riedl R et al (2013) Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem Biol 8:1519–1527. doi:10.1021/cb400158t

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Santhosh S, Kumar P, Ramprasad V, Chaudhuri A (2015) Evolution of targeted therapies in cancer: opportunities and challenges in the clinic. Future Oncol 11:279–293. doi:10.2217/fon.14.198

    Article  CAS  PubMed  Google Scholar 

  51. Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, Heusser C, Brinkmann V, von Matt P, Hofle G et al (2002) Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physico-chemical and biological properties. J Antibiot 55:543–551

    Article  CAS  PubMed  Google Scholar 

  52. Schirle M, Bantscheff M, Kuster B (2012) Mass spectrometry-based proteomics in preclinical drug discovery. Chem Biol 19:72–84. doi:10.1016/j.chembiol.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  53. Schlecht R, Scholz SR, Dahmen H, Wegener A, Sirrenberg C, Musil D, Bomke J, Eggenweiler HM, Mayer MP, Bukau B (2013) Functional analysis of Hsp70 inhibitors. PLoS ONE 8:e78443. doi:10.1371/journal.pone.0078443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S, Miault C, Zwingelstein C, Krastel P, Noble C, Beer D, Rao SP et al (2011) The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl 50:5889–5891. doi:10.1002/anie.201101740

    Article  CAS  PubMed  Google Scholar 

  55. Singh R, Sharma M, Joshi P, Rawat DS (2008) Clinical status of anti-cancer agents derived from marine sources. Anticancer Agents Med Chem 8:603–617

    Article  CAS  PubMed  Google Scholar 

  56. Spillman NJ, Allen RJ, McNamara CW, Yeung BK, Winzeler EA, Diagana TT, Kirk K (2013) Na(+) regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13:227–237. doi:10.1016/j.chom.2012.12.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519. doi:10.1038/nrd3480

    Article  CAS  PubMed  Google Scholar 

  58. Trotter JF, Lizardo-Sanchez L (2014) Everolimus in liver transplantation. Curr Opin Organ Transpl 19:578–582. doi:10.1097/MOT.0000000000000127

    Article  CAS  Google Scholar 

  59. Waller CF (2014) Imatinib mesylate. Recent Results Cancer Res 201:1–25. doi:10.1007/978-3-642-54490-3_1

    Article  CAS  PubMed  Google Scholar 

  60. White NJ, Pukrittayakamee S, Phyo AP, Rueangweerayut R, Nosten F, Jittamala P, Jeeyapant A, Jain JP, Lefevre G, Li R et al (2014) Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med 371:403–410. doi:10.1056/NEJMoa1315860

    Article  PubMed Central  PubMed  Google Scholar 

  61. Yeung BK, Zou B, Rottmann M, Lakshminarayana SB, Ang SH, Leong SY, Tan J, Wong J, Keller-Maerki S, Fischli C et al (2010) Spirotetrahydro beta-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J Med Chem 53:5155–5164. doi:10.1021/jm100410f

    Article  CAS  PubMed  Google Scholar 

  62. Zeisel MB, Lupberger J, Fofana I, Baumert TF (2013) Host-targeting agents for prevention and treatment of chronic hepatitis C: perspectives and challenges. J Hepatol 58:375–384. doi:10.1016/j.jhep.2012.09.022

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the management of our departments Developmental and Molecular Pathways and Center for Proteomic Chemistry for continued support and the freedom to explore novel biological space. Special thanks to the head of the Natural Products Unit Frank Petersen for careful reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther K. Schmitt.

Additional information

Special Issue: Natural Product Discovery and Development in the Genomic Era. Dedicated to Professor Satoshi Ōmura for his numerous contributions to the field of natural products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, E.K., Hoepfner, D. & Krastel, P. Natural products as probes in pharmaceutical research. J Ind Microbiol Biotechnol 43, 249–260 (2016). https://doi.org/10.1007/s10295-015-1691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1691-9

Keywords

Navigation