Skip to main content
Log in

Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The thermostable β-glucosidase gene from Thermotoga petrophila DSM 13995 was cloned and overexpressed in Escherichia coli. The activity of the recombinant β-glucosidase was 21 U/mL in the LB medium. Recombinant β-glucosidase was purified, and its molecular weight was approximately 81 kDa. The optimal activity was at pH 5.0 and 90 °C, and the thermostability of the enzyme was improved by Ca2+. The β-glucosidase had high selectivity for cleaving the outer and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1, which produced the pharmacologically active minor ginsenoside 20(S)-Rg3. In a reaction at 90 °C and pH 5.0, 10 g/L of ginsenoside Rb1 was transformed into 6.93 g/L of Rg3 within 90 min, with a corresponding molar conversion of 97.9 %, and Rg3 productivity of 4620 mg/L/h. This study is the first report of a GH3-family enzyme that used Ca2+ to improve its thermostability, and it is the first report on the high substrate concentration bioconversion of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by using thermostable β-glucosidase under high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews SR, Taylor EJ, Pell G, Vincent F, Ducros VM-A, Davies GJ et al (2004) The use of forced protein evolution to investigate and improve stability of family 10 xylanases the production of Ca2 + -independent stable xylanases. J Biol Chem 279:54369–54379

    Article  CAS  PubMed  Google Scholar 

  2. Attele AS, Wu JA, Yuan C-S (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685–1693

    Article  CAS  PubMed  Google Scholar 

  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J, Smith JA et al (2002) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology. Wiley, New York

    Google Scholar 

  4. Bae E-A, Han MJ, Choo M-K, Park S-Y, Kim D-H (2002) Metabolism of 20 (S)-and 20 (R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull 25:58

    Article  CAS  PubMed  Google Scholar 

  5. Chang KH, Jo MN, Kim K-T, Paik H-D (2014) Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3. J Ginseng Res 38:47–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cheng L-Q, Na JR, Bang MH, Kim MK, Yang D-C (2008) Conversion of major ginsenoside Rb1 to 20 (S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69:218–224

    Article  CAS  PubMed  Google Scholar 

  7. Dion M, Fourage L, Hallet JN, Colas B (1999) Cloning and expression of a beta-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconj J 16:27–37

    Article  CAS  PubMed  Google Scholar 

  8. Gabelsberger J, Liebl W, Schleifer K-H (1993) Purification and properties of recombinant β-glucosidase of the hyperthermophilic bacterium Thermotoga maritima. Appl Microbiol Biotechnol 40:44–52

    CAS  Google Scholar 

  9. Gillis CN (1997) Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 54:1–8

    Article  CAS  PubMed  Google Scholar 

  10. Haakana H, Miettinen-Oinonen A, Joutsjoki V, Mäntylä A, Suominen P, Vehmaanperä J (2004) Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzym Microb Technol 34:159–167

    Article  CAS  Google Scholar 

  11. Han B, Park M, Han Y, Woo L, Sankawa U, Yahara S et al (1982) Degradation of ginseng saponins under mild acidic conditions. Planta Med 44:146–149

    Article  CAS  PubMed  Google Scholar 

  12. Keum Y-S, Park K-K, Lee J-M, Chun K-S, Park JH, Lee SK et al (2000) Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 150:41–48

    Article  CAS  PubMed  Google Scholar 

  13. Kim C, Choi K, Kim S, Ko S, Sung H, Lee Y (1998) Controls of the hydrolysis of ginseng saponins by neutralization of organic acids in red ginseng extract preparations. J Ginseng Res 22:205–210

    CAS  Google Scholar 

  14. Kim Y-S, Yeom S-J, Oh D-K (2011) Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. J Agric Food Chem 59:11812–11818

    Article  CAS  PubMed  Google Scholar 

  15. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  16. Lee HU, Bae EA, Han MJ, Kim DH (2005) Hepatoprotective effect of 20(S)-ginsenosides Rg3 and its metabolite 20(S)-ginsenoside Rh2 on tert-butyl hydroperoxide-induced liver injury. Biol Pharm Bull 28:1992–1994

    Article  CAS  PubMed  Google Scholar 

  17. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, TONo-oKA S et al (1995) Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20 (R)-and 20 (S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 18:1197–1202

    Article  CAS  PubMed  Google Scholar 

  18. Ni J, Xin Y, Wang X, Shi B, Chen D, Tian K et al (2005) Effect of 20 (S)-ginsenoside Rg3 combined with cytotoxic agents on sarcoma 180 of mice. Ji Lin Da Xue Xue Bao (Yi Xue Ban) 31:705–708

    CAS  Google Scholar 

  19. Noh K-H, Oh D-K (2009) Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius. Biol Pharm Bull 32:1830–1835

    Article  CAS  PubMed  Google Scholar 

  20. Noh K-H, Son J-W, Kim H-J, Oh D-K (2009) Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 73:316–321

    Article  CAS  PubMed  Google Scholar 

  21. Park MW, Ha J, Chung SH (2008) 20 (S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol Pharm Bull 31:748–751

    Article  CAS  PubMed  Google Scholar 

  22. Park TH, Choi KW, Park CS, Lee SB, Kang HY, Shon KJ et al (2005) Substrate specificity and transglycosylation catalyzed by a thermostable beta-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl Microbiol Biotechnol 69:411–422

    Article  CAS  PubMed  Google Scholar 

  23. Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat MK (2001) Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Pei J, Pang Q, Zhao L, Fan S, Shi H (2012) Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels 5:1–10

    Article  Google Scholar 

  25. Quan L-H, Min J-W, Yang D-U, Kim Y-J, Yang D-C (2012) Enzymatic biotransformation of ginsenoside Rb1 to 20 (S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biotechnol 94:377–384

    Article  CAS  PubMed  Google Scholar 

  26. Rojas A, Arola L, Romeu A (1995) beta-Glucosidase families revealed by computer analysis of protein sequences. Biochem Mol Biol Int 35:1223–1231

    CAS  PubMed  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  28. Sevastsyanovich YR, Alfasi SN, Cole JA (2010) Sense and nonsense from a systems biology approach to microbial recombinant protein production. Biotechnol Appl Biochem 55:9–28

    Article  CAS  PubMed  Google Scholar 

  29. Shao W, Wiegel J (1992) Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J Bazcteriol 174:5848–5853

    CAS  Google Scholar 

  30. Shi H, Zhang Y, Li X, Huang Y, Wang L, Wang Y et al (2013) A novel highly thermostable xylanase stimulated by Ca 2 + from Thermotoga thermarum: cloning, expression and characterization. Biotechnol Biofuels 6:26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shin K-C, Lee H-J, Oh D-K (2014) Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg 3, Rg 2, and Rh 1 from ginseng root extract. J Biosci Bioeng

  32. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  33. Sumida T, Sueyoshi N, Ito M (2002) Molecular Cloning and Characterization of a Novel Glucocerebrosidase of Paenibacillus sp. TS12. J Biochem 132:237–243

    Article  CAS  PubMed  Google Scholar 

  34. Sun B-S, Gu L-J, Fang Z-M, C-y Wang, Wang Z, Lee M-R et al (2009) Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC–ELSD. J Pharm Biomed Anal 50:15–22

    Article  CAS  PubMed  Google Scholar 

  35. Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    Article  CAS  PubMed  Google Scholar 

  36. Thongpoo P, McKee LS, Araújo AC, Kongsaeree PT, Brumer H (2013) Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) β-glucosidase from Aspergillus niger ASKU28. Biochimica et Biophysica Acta (BBA) - General Subjects 1830:2739–49

  37. Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W et al (2005) Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 374:92–97

    Article  CAS  PubMed  Google Scholar 

  38. Turner P, Pramhed A, Kanders E, Hedström M, Karlsson EN, Logan DT (2007) Expression, purification, crystallization and preliminary X-ray diffraction analysis of Thermotoga neapolitana β-glucosidase B. Acta Crystallogr Sect F 63:802–806

    Article  CAS  Google Scholar 

  39. Wu J, Zhong J-J (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 68:89–99

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida E, Hidaka M, Fushinobu S, Koyanagi T, Minami H, Tamaki H et al (2009) Purification, crystallization and preliminary X-ray analysis of beta-glucosidase from Kluyveromyces marxianus NBRC1777. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 65:1190–1192

    Article  CAS  Google Scholar 

  41. Zhao L, Xie J, Zhang X, Cao F, Pei J (2013) Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. J Mol Catal B Enzym 95:62–69

    Article  CAS  Google Scholar 

  42. Zou Z-Z, Yu H-L, Li C-X, Zhou X-W, Hayashi C, Sun J et al (2012) A new thermostable β-glucosidase mined from Dictyoglomus thermophilum: properties and performance in octyl glucoside synthesis at high temperatures. Biores Technol 118:425–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 11th Six Talents Peak Project of Jiangsu Province (Grant No. 2014-JY-011), the Natural Science Foundation of Jiangsu Higher Education Institutions (Grant No. 12KJB220001), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131423), the Open Fund of Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals (Grant No. JSBGFC12003), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Postdoctoral Science Foundation of Jiangsu Province (Grant No. 1302022B) as well as the Doctorate Fellowship Foundation of Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linguo Zhao or Wei Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhao, D., Zhao, L. et al. Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. J Ind Microbiol Biotechnol 42, 839–850 (2015). https://doi.org/10.1007/s10295-015-1608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1608-7

Keywords

Navigation