Skip to main content
Log in

Immobilization of Streptomyces thermotolerans 11432 on polyurethane foam to improve production of Acetylisovaleryltylosin

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this study, polyurethane foam (PUF) was chemically treated to immobilize Streptomyces thermotolerans 11432 for semi-continuous production of acetylisovaleryltylosin (AIV). Based on experimental results, positive cross-linked PUF (PCPUF) was selected as the most effective carrier according to immobilized cell mass. The effect of adsorption time on immobilized mass was investigated. AIV concentration (33.54 mg/l) in batch fermentations with immobilized cells was higher than with free cells (20.34 mg/l). In repeated batch fermentations with immobilized S. thermotolerans 11432 using PCPUF cubes, high AIV concentrations and conversion rates were attained, ranging from 25.56 to 34.37 mg/l and 79.93 to 86.31 %, respectively. Significantly, this method provides a feasible strategy for efficient AIV production and offers the potential for large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arisawa A, Kawamura N, Narita T, Kojima I, Okamura K, Tsunekawa H et al (1996) Direct fermentative production of acyltylosins by genetically-engineered strains of Streptomyces fradiae. J Antibiot 49:349–354

    Article  CAS  PubMed  Google Scholar 

  2. Alons Morales N, López Gallego F, Betancor L, Hidalgo A, Mateo C, Fernandez-Lafuente R (2004) Reversible immobilization of glutaryl acylase on sepabeads coated with polyethyleneimine. Biotechnol Prog 20:533–536. doi:10.1021/bp0342248

    Article  Google Scholar 

  3. Beg QK, Bhushan B, Kapoor M, Andondal GS (2000) Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402. doi:10.1038/sj.jim.7000010

    Article  CAS  Google Scholar 

  4. Budriene S, Romaskevic T, Pielichowski K (2007) Synthesis and characterization of polyurethane microspheres and their application for immobilization of maltogenase. Polym Adv Technol 18:67–71. doi:10.1002/pat.797

    Article  CAS  Google Scholar 

  5. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci 100(suppl2):14555–14561. doi:10.1073/pnas.1934677100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cui C, Tao Y, Li L, Chen B, Tan T (2013) Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. J Mol Catal B Enzym 91:59–66. doi:10.1016/j.molcatb.2013.03.001

    Article  CAS  Google Scholar 

  7. Devi S, Sridhar P (1999) Optimization of critical parameters for immobilization of Streptomyces clavuligerus on alginate gel matrix for cephamycin C production. World J Microbiol Biotechnol 15:185–192. doi:10.1023/A:1008814427427

    Article  Google Scholar 

  8. Devi S, Sridhar P (2000) Production of cephamycin C in repeated batch operations from immobilized Streptomyces clavuligerus. Process Biochem 36:225–231. doi:10.1016/S0032-9592(00)00194-1

    Article  CAS  Google Scholar 

  9. Du L, Liu RH, Ying L, Zhao GR (2012) An efficient intergeneric conjugation of DNA from Escherichia coli to mycelia of the lincomycin-producer Streptomyces lincolnensis. Int J Mol Sci 13(4):4797–4806. doi:10.3390/ijms13044797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Elibol M (2002) Product shifting by controlling medium pH in immobilized Streptomyces coelicolor A3(2) culture. Process Biochem 37:1381–1386. doi:10.1016/S0032-9592(02)00019-5

    Article  CAS  Google Scholar 

  11. Huang G, Okamoto R, Hikita A (1997) Optimization of conditions for conversion of tylosin to a novel antibiotic, acetyl-isovaleryl tylosin (AIV), Streptomyces thermotolerans and scale-up to 200-liter pilot-scale fermentor. J Ferment Bioeng 84:77–81. doi:10.1016/S0922-338X(97)82790-0

    Article  CAS  Google Scholar 

  12. Huang GW, Okabe M, Kahar P, Tsunekawa H, Park Y (2001) Optimization of tylosin feeding rate profile in production of Acetyl-Isovaleryl Tylosin (AIV) from tylosin by Streptomyces thermotolerans YN554. J Biosci Bio-Eng 5:504–508. doi:10.1263/jbb.91.504

    Article  Google Scholar 

  13. Ishida BK (1988) Improved diosgenin production in Dioscorea deltoidea cell cultures by immobilization in polyurethane foam. Plant Cell Rep 7:270–273. doi:10.1007/BF00272540

    Article  CAS  PubMed  Google Scholar 

  14. Khang YH, Shankar H, Senatore F (1988) Modeling the effect of oxygen mass transfer on β-lactam antibiotic production by immobilized Cephalosporium acremonium. Biotechnol Lett 10:861–866

    Article  CAS  Google Scholar 

  15. Kurosawa H, Matsumura M, Tanaka H (1989) Oxygen diffusivity in gel beads containing viable cells. Biotechnol Bioeng 34:926–932. doi:10.1002/bit.260340707

    Article  CAS  PubMed  Google Scholar 

  16. Kim IC, Kim CH, Hong SI, Hong SW (2001) Fed-batch cultivation for the production of clavulanic acid by an immobilized Streptomyces clavuligerus mutant. World J Microbiol Biotechnol 17:869–872. doi:10.1023/A:1013895617923

    Article  CAS  Google Scholar 

  17. Kim CJ, Chang YK, Chun GT, Jeong YH, Lee SJ (2001) Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnol Prog 17:453–461. doi:10.1021/bp010020k

    Article  CAS  PubMed  Google Scholar 

  18. López-Gallego F, Betancor L, Hidalgo A, Hidalgo A, Alonso N, Fernández-Lafuente R, Guisán JM (2005) Co-aggregation of enzymes and polyethyleneimine: a simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules 6:1839–1842. doi:10.1021/bm050088e

    Article  PubMed  Google Scholar 

  19. Liu S, Lin B, Yang X, Zhang Q (2007) Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film. J Phys Chem B 111:1182–1188. doi:10.1021/jp065344b

    Article  CAS  PubMed  Google Scholar 

  20. Okamoto R, Nomura H, Tsuchiya M, Tsunekawa H, Fuknmoto T, Inui T, Takeucki T, Umezawa H (1979) The activity of 4″-acylated tylosin derivatives against macrolide-resistant Gram-positive bacteria. The Journal of antibiotics 32:542–546

    Article  CAS  PubMed  Google Scholar 

  21. Okamoto R, Fukumoto T, Nomura H, Kiyoshims K, Takamatsu A, Takeuchi T (1980) Physico-chemical properties of new acyl derivatives of tylosin produced by microbial transformation. J Antibiot 33:1300–1308

    Article  CAS  PubMed  Google Scholar 

  22. Okamoto R, Tsuchiya M, Nomura H, Iguchi H, Kiyoshima K, Hori S, Inui T, Sawa T, Takeuchi T, Umezawa H (1980) Biological properties of new acyl derivatives of tylosin. J Antibiot 33:1309–1315

    Article  CAS  PubMed  Google Scholar 

  23. Ozdemir E (2009) Biomimetic CO2 sequestration: 1. Immobilization of carbonic anhydrase within polyurethane foam. Energy Fuels 23:5725–5730. doi:10.1021/ef9005725

    Article  CAS  Google Scholar 

  24. Papagianni M, Joshi N, Moo-Young M (2002) Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus nigercultures. J Ind Microbiol Biotechnol 29:259–263. doi:10.1038/sj.jim.7000289

    Article  CAS  PubMed  Google Scholar 

  25. Pires-Cabral P, da Fonseca MMR, Ferreira-Dias S (2009) Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams: a kinetic study. Biochem Eng J 43:327–332. doi:10.1016/j.bej.2008.11.002

    Article  CAS  Google Scholar 

  26. Quek E, Ting YP, Tan HM (2006) Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Bioresour Technol 97:32–38. doi:10.1016/j.biortech.2005.02.031

    Article  CAS  PubMed  Google Scholar 

  27. Schügerl K, Bayer T, Niehoff J, Oller M, Zhou W (1988) Influence of cell environment on the morphology of molds and the biosynthesis of antibiotics in bioreactors. In: Proceedings of 2nd conference on bioreactor fluid dynamics. Elsevier, Amsterdam 132: 229–243

  28. Srinivasulu B, Prakasham RS, Jetty A, Srinivas S, Ellaiah P, Ramakrishna SV (2002) Neomycin production with free and immobilized cells of Streptomyces marinensisin an airlift reactor. Process Biochem 38:593–598. doi:10.1016/S0032-9592(02)00182-6

    Article  CAS  Google Scholar 

  29. Shu C, Cai J, Huang L, Zhu XC, Xu ZN (2011) Biocatalytic production of ethyl butyrate from butyric acid with immobilized Candida rugosa lipase on cotton cloth. J Mol Catal B Enzym 72:139–144. doi:10.1016/j.molcatb.2011.05.011

    Article  CAS  Google Scholar 

  30. Survase SA, van Heiningen A, Granström T (2013) Wood pulp as an immobilization matrix for the continuous production of isopropanol and butanol. J Ind Microbiol Biotechnol 40:209–215. doi:10.1007/s10295-012-1219-5

    Article  CAS  PubMed  Google Scholar 

  31. Tsuchiya M, Suzukake K, Hori M, Sawa T, Taken T, Umezawa H (1981) Studies on the effects of 3-acetyl-4″-isovaleryltylosin against multiple-drug resistant strains of Staphylococcus aureus. J Antibiot 34:305–312

    Article  CAS  PubMed  Google Scholar 

  32. Torres R, Pessela BCC, Mateo C (2004) Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Biotechnol Prog 20:1297–1300. doi:10.1021/bp049943g

    Article  CAS  PubMed  Google Scholar 

  33. Weaire DL, Hutzler S (2001) The physics of foams. Oxford University Press, Oxford

    Google Scholar 

  34. Wei P, Chen J, Lu Y (2010) High density cultivation of Dictyostelium discoideum in a rotating polyurethane foam-bed bioreactor. World J Microbiol Biotechnol 26:1117–1123. doi:10.1007/s11274-009-0278-x

    Article  CAS  Google Scholar 

  35. Weihua W (2014) Overexpression of acyB and Immobilization of Streptomyces thermotolerans on Polyurethane foam to improve production of Acetylisovaleryltylosin. MS thesis. Tianjin University, 2014

  36. Yamaguchi T, Ishida M, Suzuki T (1999) An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochem 34:167–172. doi:10.1016/S0032-9592(98)00084-3

    Article  CAS  Google Scholar 

  37. Zarzyka I (2014) The modification of polyurethane foams using new boroorganic bolyols. II. Polyurethane foams from boron-modified hydroxypropyl urea derivatives. Polym-Plast Technol Eng 53(2):207–215. doi:10.1080/03602559.2013.844236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 31370091) and Natural Science Foundation of Tianjin (Grant No. 10JCYBJC10300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Qiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Wang, W., Liu, J. et al. Immobilization of Streptomyces thermotolerans 11432 on polyurethane foam to improve production of Acetylisovaleryltylosin. J Ind Microbiol Biotechnol 42, 105–111 (2015). https://doi.org/10.1007/s10295-014-1545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1545-x

Keywords

Navigation