Skip to main content
Log in

Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Genistin and daidzein exhibit a protective effect on DNA damage and inhibit cell proliferation. Glycosylation and malonylation of the compounds increase water solubility and stability. Constructed pET15b-GmIF7GT and pET28a-GmIF7MAT were used for the transformation of Escherichia coli and bioconversion of genistein and daidzein. To increase the availability of malonyl-CoA, a critical precursor of GmIF7MAT, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinia were also introduced. Thus, the isoflavonoids were glycosylated at position 7 by 7-O-glycosyltranferase and were further malonylated at position 6 of glucose by malonyl-CoA: isoflavone 7-O-glucoside-6-O-malonyltransferase both from Glycine max. Engineered E. coli produced 175.7 µM (75.90 mg/L) of genistin and 14.2 µM (7.37 mg/L) genistin 6″-O-malonate. Similar conditions produced 162.2 µM (67.65 mg/L) daidzin and 12.4 µM (6.23 mg/L) daidzin 6″-O-malonate when 200 µM of each substrate was supplemented in the culture. Based on our findings, we speculate that isoflavonoids and their glycosides may prove useful as anticancer drugs with added advantage of increased solubility, stability and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andlauer W, Kolb J, Furst P (2000) Isoflavones from tofu are absorbed and metabolized in the isolated rat small intestine. J Nutr 130:3021–3027

    PubMed  CAS  Google Scholar 

  2. Astumi S, Cann AF, Connor MR, Shen CR, Smith KM, Beynildsen MP et al (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  Google Scholar 

  3. Choi EJ, Kim T, Lee MS (2007) Pro-apotoptic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells. Life Sci 80:1403–1408

    Article  PubMed  CAS  Google Scholar 

  4. Davis SR, Dalais FS, Simpson ER, Murkies AL (1999) Phytoestrogens in health and disease. Recent Prog Horm Res 54:185–210

    PubMed  CAS  Google Scholar 

  5. Dewick PM (1993) The flavonoids, advances in research since 1986. In: Harborne JB (ed) Isoflavonoids. Chapman and Hall, London, pp 117–238

    Google Scholar 

  6. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Fleury Y, Magnolato D (1992) Process for obtaining genistin malonate and daidzin malonate. US Patent 5141746

  8. Heller W, Forkmann G (1994) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman & Hall, London, pp 499–535

    Google Scholar 

  9. http://openwetware.org/wiki/NanoBio:_Protocol_for_gene_knockout

  10. Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23:265–279

    Article  PubMed  CAS  Google Scholar 

  11. Koirala N, Pandey RP, Parajuli P, Jung HJ, Sohng JK (2014) Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. J Biotech 184:128–137

    Article  CAS  Google Scholar 

  12. Kren V, Martinkova L (2001) Glycosides in medicine: the role of glycosidic residue in biological activity. Curr Med Chem 8:1303–1328

    Article  PubMed  CAS  Google Scholar 

  13. Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MAG (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265

    Article  PubMed  CAS  Google Scholar 

  14. Li L, Modolo LV, Escamilla-Trevino LL, Achnine L, Dixon RA, Wand X (2007) Crystal structure of Medicago truncatula UGT85H2-insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 370:951–963

    Article  PubMed  CAS  Google Scholar 

  15. Lim EK, Ashford DA, Hou B, Jackson RG, Bowles DJ (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regio-selective synthesis of diverse quercetin glucosides. Biotechnol Bioeng 87:623–631

    Article  PubMed  CAS  Google Scholar 

  16. Liu T, Khosla C (2010) Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet 44:53–69

    Article  PubMed  CAS  Google Scholar 

  17. Malla S, Koffas MA, Kazlauskas RJK, Kim BG (2011) production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Appl Environ Microbiol 78:684–694

    Article  PubMed  Google Scholar 

  18. Matern U, Heller W, Himmelspach K (1983) Conformational changes of apigenin 7-O-(6-O-malonylglucoside), a vacular pigment from parsley, with solvent composition and proton concentration. Eur J Biochem 133:439–448

    Article  PubMed  CAS  Google Scholar 

  19. Messina MJ, Persky V, Setchell KD, Barnes S (1994) Soy intake and cancer risk: a review of the invitro and invivo data. Nutr Cancer 21:113–131

    Article  PubMed  CAS  Google Scholar 

  20. Noguchi A, Horikawa M, Fukui Y, Fukuchi-Mitzutani M, Luchi-Okada A, Ishiquro M et al (2009) local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales. Plant Cell 21:1556–1572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Noguchi A, Saito A, Homma Y, Masahiro N, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) A UDP-glucose: isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings. J Biol Chem 282:23581–23590

    Article  PubMed  CAS  Google Scholar 

  22. Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA et al (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Pandey RP, Malla S, Simkhada D, Kim BG, Sohng JK (2013) Production of 3-O-xylosyl quercetin in Escherechia coli. Appl Microbiol Biotechnol 97:1889–1901

    Article  PubMed  CAS  Google Scholar 

  24. Podkowinski J, Tworak A (2011) Acetyl-coenzyme A carboxylase-an attractive enzyme for biotechnology. Biotechnologia 92:321–335

    CAS  Google Scholar 

  25. Reynaud J, Guilet D, Terreux R, Lussignol M, Walchshofer N (2005) Isoflavonoids in non-leguminous families: an update. Nat Prod Rep 22:504–515

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez-Diaz J, Yebra MJ (2011) Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei. J Biotechnol 154:212–215

    Article  PubMed  CAS  Google Scholar 

  27. Russo A, Cardile V, Lombardo L, Vanella L, Acquaviva R (2006) Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J Nutr Biochem 17:103–108

    Article  PubMed  CAS  Google Scholar 

  28. Setchell KD, Cassidy A (1999) Dietary isoflavones:biological effects and relevance to human health. J Nutr 129:758S–767S

    PubMed  CAS  Google Scholar 

  29. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

  30. Setchell KDR, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76:447–453

    PubMed  CAS  Google Scholar 

  31. Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Yamaguchi M, Tanaka Y, Kusumi T, Nishino T (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl Coenzyme A: anthocynidin 3-O-glucoside-6″-O-malonyltransferase from dahlia flowers. Plant Physiol 130:2142–2151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Suzuki H, Nishino T, Nakayama T (2007) cDNA cloning of a BADH acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6″-O-malonyltransferase. Phytochemistry 68:2035–2042

    Article  PubMed  CAS  Google Scholar 

  33. Takamura Y, Nomura G (1988) changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J Gen Microbiol 134:2249–2253

    PubMed  CAS  Google Scholar 

  34. Taylor M (2003) Alternatives to HRT: an evidence-based review. Int J Menopausal Stud 48:64–68

    CAS  Google Scholar 

  35. Watanabe S, Uesugi S, Zhuo X, Kimira M (2003) Phytoestrogen and cancer prevention. Jpn J Cancer Res 30:902–908

    CAS  Google Scholar 

  36. Wei H, Saladi R, Lu Y, Wang Y, Palep SR, Moore J, Phelps R, Shyong E, Lebwohl MG (2003) Isoflavone genistein: photoprotection and clinical implications in dermatology. J Nutr 133:3811S–3819S

    PubMed  CAS  Google Scholar 

  37. Wen KC, Lin SP, Yu CP, Chiang HM (2010) Comparision of puerariae radix and its hydrolysate on stimulation of hyaluronic acid production in NHEK cells. Am J Clin Med 38:143–155

    Article  CAS  Google Scholar 

  38. Williams CA, Harborne JB (1994) Flavone and Flavonol glucosides. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman & Hall, London, pp 337–385

    Google Scholar 

  39. Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Next-Generation BioGreen 21 Program (SSAC, grant#: PJ0094832), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koirala, N., Pandey, R.P., Van Thang, D. et al. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives. J Ind Microbiol Biotechnol 41, 1647–1658 (2014). https://doi.org/10.1007/s10295-014-1504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1504-6

Keywords

Navigation