Skip to main content
Log in

Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus terreus

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

It is important to develop native and highly efficient promoters for effective genetic engineering of filamentous fungi. Although Aspergillus terreus is an important industrial fungus for the production of itaconic acid and lovastatin, the available genetic toolbox for this microorganism is still rather limited. We have cloned the 5′ upstream region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd; 2,150 bp from the start codon) from A. terreus CICC 40205 and subsequently confirmed its promoter function using sgfp (synthetic green fluorescent protein) as the reporter. The sequence of the promoter PgpdAt was further analysed by systematic deletion to obtain an effective and compact functional promoter. Two truncated versions of PgpdAt (1,081 and 630 bp) were also able to drive sgfp expression in A. terreus. The activities of these three PgpdAt promoters of varying different lengths were further confirmed by fluorescence, western blot and transcription. The shortest one (630 bp) was successfully applied as a driver of vgb expression in the genetic engineering of A. terreus. The function of expressed haemoglobin was demonstrated by the CO (carbon monoxide)-difference spectrum and enhanced oxygen uptake rate, glucose consumption and itaconic acid titer. Our study was successful in developing and validating an efficient and compact native promoter for genetic engineering of A. terreus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  CAS  PubMed  Google Scholar 

  2. Klement T, Buchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431

    Article  CAS  PubMed  Google Scholar 

  3. Lai LST, Hung CS, Lo CC (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104(1):9–13

    Article  CAS  PubMed  Google Scholar 

  4. Meyer V (2008) Genetic engineering of filamentous fungi–progress obstacles and future trends. Biotechnol Adv 26:177–185

    Article  CAS  PubMed  Google Scholar 

  5. Lubertozzi D, Keasling JD (2006) Marker and promoter effects on heterologous expression in Aspergillus nidulans. Appl Microbiol Biotechnol 72:1014–1023

    Article  CAS  PubMed  Google Scholar 

  6. Ganzlin M, Rinas U (2008) In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using highthroughput screening and controlled bioreactor cultivation techniques. J Biotechnol 135:266–271

    Article  CAS  PubMed  Google Scholar 

  7. Kanemori Y, Gomi K, Kitamoto K, Kumagai C, Tamura G (1999) Insertion analysis of putative functional elements in the promoter region of the Aspergillus oryzae Taka-amylase A gene (amyB) using a heterologous Aspergillus nidulans amdS-lacZ fusion gene system. Biosci Biotechnol Biochem 63:180–183

    Article  CAS  PubMed  Google Scholar 

  8. Roth AH, Dersch P (2010) A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger. Appl Microbiol Biotechnol 86:659–670

    Article  CAS  PubMed  Google Scholar 

  9. Cao Y, Jiao R, Xia Y (2012) A strong promoter PMagpd provides a tool for high gene expression in entomopathogenic fungus Metarhizium acridum. Biotechnol Lett 34:557–562

    Article  CAS  PubMed  Google Scholar 

  10. Kim JG, Choi YD, Chang YJ, Kim SU (2003) Genetic transformation of Monascus purpureus DSM1379. Biotechnol Lett 25:1509–1514

    Article  CAS  PubMed  Google Scholar 

  11. Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede RD, Pouwels PH, van den Hondel CA (1990) Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93:101–109

    Article  CAS  PubMed  Google Scholar 

  12. Van Bogaert IN, De Maeseneire SL, Develter D, Soetaert W, Vandamme EJ (2008) Cloning and characterisation of the glyceraldehyde 3-phosphate dehydrogenase gene of Candida bombicola and use of its promoter. J Ind Microbiol Biotechnol 35:1085–1092

    Article  PubMed  Google Scholar 

  13. Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M (2013) Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Appl Microbiol Biotechnol 97:259–267

    Article  CAS  PubMed  Google Scholar 

  14. Dave K, Punekar NS (2011) Utility of Aspergillus niger citrate synthase promoter for heterologous expression. J Biotechnol 155:173–177

    Article  CAS  PubMed  Google Scholar 

  15. Bando H, Hisada H, Ishida H, Hata Y, Katakura Y, Kondo A (2011) Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl Microbiol Biotechnol 92:561–569

    Article  CAS  PubMed  Google Scholar 

  16. Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270

    Article  CAS  PubMed  Google Scholar 

  17. Liao XG, Fang WG, Zhang YJ, Fan YH, Wu XW, Zhou Q, Pei Y (2008) Characterization of a highly active promoter PBbgpd in Beauveria bassiana. Curr Microbiol 57:121–126

    Article  CAS  PubMed  Google Scholar 

  18. Kuo CY, Chou SY, Huang CT (2004) Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotechnol 65:593–599

    Article  CAS  PubMed  Google Scholar 

  19. Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87:1657–1664

    Article  CAS  PubMed  Google Scholar 

  20. Lin YH, Li YF, Huang MC, Tsai YC (2004) Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate effect of a short break in aeration during culture. Biotechnol Lett 26:1067–1072

    Article  CAS  PubMed  Google Scholar 

  21. Villanueva A, Maccabe AP, Buesa J, Ramon D (1999) Apparent mRNA instability in Aspergillus nidulans and Aspergillus terreus of a heterologous cDNA encoding the major capsid antigen of Rotavirus. Rev Iberoam Micol 16:130–135

    CAS  PubMed  Google Scholar 

  22. Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48:602–611

    Article  CAS  PubMed  Google Scholar 

  23. Wen Y, Song Y, Li JL (2001) The effects of Vitreoscilla hemoglobin expression on growth and antibiotic production in Streptomyces cinnamonensis. Chin J Biotechnol 17:24–28

    CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  25. Song P, Cai C, Skokut M, Kosegi B, Petolino J (2002) Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS-derived transgenic maize. Plant Cell Rep 20:948–954

    Article  CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P (2013) Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl Microbiol Biotechnol 97:3901–3911

    Article  CAS  PubMed  Google Scholar 

  28. Punt PJ, Kramer C, Kuyvenhoven A, Pouwels PH, van den Hondel CA (1992) An upstream activating sequence from the Aspergillus nidulans gpdA gene. Gene 120:67–73

    Article  CAS  PubMed  Google Scholar 

  29. Hirano T, Sato T, Yaegashi K, Enei H (2000) Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance. Mol Gen Genet 263:1047–1052

    Article  CAS  PubMed  Google Scholar 

  30. Wei XX, Chen GQ (2008) Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol 436:273–287

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25:123–136

    Article  CAS  PubMed  Google Scholar 

  32. Hofmann G, Diano A, Nielsen J (2009) Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger. Metab Eng 11:8–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Chinese Academy of Sciences for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Lu, X. & Li, JJ. Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus terreus . J Ind Microbiol Biotechnol 41, 585–592 (2014). https://doi.org/10.1007/s10295-013-1385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1385-0

Keywords

Navigation