Skip to main content
Log in

Prospecting genomes for lasso peptides

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Genome mining has unlocked a veritable treasure chest of natural compounds. However, each family of natural products requires a genome-mining approach tailored to its unique features to be successful. Lasso peptides are ribosomally synthesized and posttranslationally modified products with a unique three-dimensional structure. Advances in the understanding of these molecules have informed the design of strategies to identify new members of the class in sequenced genomes. This review presents the bioinformatic methods used to discover novel lasso peptides and describes how such analyses have afforded insights into the biosynthesis and evolution of this peptide class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160

    Article  CAS  PubMed  Google Scholar 

  2. Bailey TL, Elkan C (1995) Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach Learn 21(1–2):51–80

    Google Scholar 

  3. Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14(1):48–54

    Article  CAS  PubMed  Google Scholar 

  4. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147. doi:10.1038/417141a

    Article  PubMed  Google Scholar 

  5. Cheung WL, Pan SJ, Link AJ (2010) Much of the microcin J25 leader peptide is dispensable. J Am Chem Soc 132:2514–2515

    Article  CAS  PubMed  Google Scholar 

  6. de Jong A, van Hijum S, Bijlsma JJE, Kok J, Kuipers OP (2006) BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res 34:W273–W279. doi:10.1093/nar/gkl237

    Article  PubMed Central  PubMed  Google Scholar 

  7. Detlefsen DJ, Hill SE, Volk KJ, Klohr SE, Tsunakawa M, Furumai T, Lin PF, Nishio M, Kawano K, Oki T, Lee MS (1995) Siamycins I and II, new Anti-HIV-1 peptides. 2. Sequence analysis and structure determination of siamycin I. J Antibiot 48(12):1515–1517

    Article  CAS  PubMed  Google Scholar 

  8. Donia MS, Ravel J, Schmidt EW (2008) A global assembly line for cyanobactins. Nat Chem Biol 4(6):341–343. doi:10.1038/nchembio.84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ducasse R, Yan KP, Goulard C, Blond A, Li YY, Lescop E, Guittet E, Rebuffat S, Zirah S (2012) Sequence determinants governing the topology and biological activity of a lasso peptide, microcin J25. ChemBioChem 13(3):371–380. doi:10.1002/cbic.201100702

    Article  CAS  PubMed  Google Scholar 

  10. Dunbar KL, Mitchell DA (2013) Revealing nature’s synthetic potential through the study of ribosomal natural product biosynthesis. ACS Chem Biol 8(3):473–487. doi:10.1021/cb3005325

    Article  CAS  PubMed  Google Scholar 

  11. Duquesne S, Destoumieux-Garzón D, Zirah S, Goulard C, Peduzzi J, Rebuffat S (2007) Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol 14:793–803

    Article  CAS  PubMed  Google Scholar 

  12. Ferguson AL, Zhang SY, Dikiy I, Panagiotopoulos AZ, Debenedetti PG, Link AJ (2010) An experimental and computational investigation of spontaneous lasso formation in microcin J25. Biophys J 99:3056–3065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hegemann JD, Zimmermann M, Xie XL, Marahiel MA (2013) Caulosegnins I–III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J Am Chem Soc 135(1):210–222. doi:10.1021/ja308173b

    Article  CAS  PubMed  Google Scholar 

  14. Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013) Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Biopolymers. doi:10.1002/bip.22326

  15. Huo LJ, Rachid S, Stadler M, Wenzel SC, Muller R (2012) Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem Biol 19(10):1278–1287. doi:10.1016/j.chembiol.2012.08.013

    Article  CAS  PubMed  Google Scholar 

  16. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp K01-B0171, have a lasso structure. J Am Chem Soc 128(23):7486–7491

    Article  CAS  PubMed  Google Scholar 

  17. Katahira R, Yamasaki M, Matsuda Y, Yoshida M (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp. 2. Solution structure of MS-271: characteristic features of the ‘lasso’ structure. Bioorg Med Chem 4(1):121–129. doi:10.1016/0968-0896(95)00176-x

    Article  CAS  PubMed  Google Scholar 

  18. Kersten RD, Yang Y-L, Xu Y, Cimermancic P, Nam S-J, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7(11):794–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kimura KI, Kanou F, Takahashi H, Esumi Y, Uramoto M, Yoshihama M (1997) Propeptin, a new inhibitor of prolyl endopeptidase produced by Microbispora. 1. Fermentation, isolation and biological properties. J Antibiot 50(5):373–378

    Article  CAS  PubMed  Google Scholar 

  20. Knappe TA, Linne U, Robbel L, Marahiel MA (2009) Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem Biol 16(12):1290–1298. doi:10.1016/j.chembiol.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  21. Knappe TA, Linne U, Xie XL, Marahiel MA (2010) The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett 584(4):785–789. doi:10.1016/j.febslet.2009.12.046

    Article  CAS  PubMed  Google Scholar 

  22. Knappe TA, Linne U, Zirah S, Rebuffat S, Xie XL, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130(34):11446–11454. doi:10.1021/ja802966g

    Article  CAS  PubMed  Google Scholar 

  23. Kuznedelov K, Semenova E, Knappe TA, Mukhamedyarov D, Srivastava A, Chatterjee S, Ebright RH, Marahiel MA, Severinov K (2011) The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. J Mol Biol 412:842–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liu WT, Kersten RD, Yang YL, Moore BS, Dorrestein PC (2011) Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J Am Chem Soc 133(45):18010–18013. doi:10.1021/ja2040877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Luo H, Hallen-Adams HE, Walton JD (2009) Processing of the phalloidin proprotein by prolyl oligopeptidase from the mushroom Conocybe albipes. J Biol Chem 284(27):18070–18077. doi:10.1074/jbc.M109.006460

    Article  CAS  PubMed  Google Scholar 

  26. Maksimov MO, Link AJ (2013) Discovery and characterization of an isopeptidase that linearizes lasso peptides. J Am Chem Soc. doi:10.1021/ja4054256

    PubMed  Google Scholar 

  27. Maksimov MO, Pan SJ, Link AJ (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29:996–1006

    Article  CAS  PubMed  Google Scholar 

  28. Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci USA 109(38):15223–15228

    Article  CAS  PubMed  Google Scholar 

  29. McIntosh JA, Donia MS, Schmidt EW (2009) Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 26(4):537–559. doi:10.1039/b714132g

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell 14(6):739–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6(1):9–18. doi:10.1038/nchembio.286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pan SJ, Link AJ (2011) Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J Am Chem Soc 133:5016–5023

    Article  CAS  PubMed  Google Scholar 

  33. Pan SJ, Rajniak J, Cheung WL, Link AJ (2012) Construction of a single polypeptide that matures and exports the lasso peptide microcin J25. ChemBioChem 13(3):367–370

    Article  CAS  PubMed  Google Scholar 

  34. Pan SJ, Rajniak J, Maksimov MO, Link AJ (2012) The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. Chem Commun 48(13):1880–1882

    Article  CAS  Google Scholar 

  35. Rosengren KJ, Blond A, Afonso C, Tabet JC, Rebuffat S, Craik DJ (2004) Structure of thermolysin cleaved microcin J25: extreme stability of a two-chain antimicrobial peptide devoid of covalent links. Biochemistry 43(16):4696–4702. doi:10.1021/bi0361261

    Article  CAS  PubMed  Google Scholar 

  36. Salomon RA, Farias RN (1992) Microcin-25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174(22):7428–7435

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight post-translationally modified microcins. Mol Microbiol 65(6):1380–1394. doi:10.1111/j.1365-2958.2007.05874.x

    Article  CAS  PubMed  Google Scholar 

  38. Solbiati JO, Ciaccio M, Farias RN, Gonzalez-Pastor JE, Moreno F, Salomon RA (1999) Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 181(8):2659–2662

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Solbiati JO, Ciaccio M, Farias RN, Salomon RA (1996) Genetic analysis of plasmid determinants for microcin J25 production and immunity. J Bacteriol 178(12):3661–3663

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC, Park S, Shin J, Oh DC (2013) Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod 76(5):873–879. doi:10.1021/np300902g

    Article  CAS  PubMed  Google Scholar 

  41. Velasquez JE, van der Donk WA (2011) Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol 15(1):11–21. doi:10.1016/j.cbpa.2010.10.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Voller GH, Krawczyk B, Ensle P, Sussmuth RD (2013) Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation. J Am Chem Soc 135(20):7426–7429. doi:10.1021/ja402296m

    Article  PubMed  Google Scholar 

  43. Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132(8):2469–2493. doi:10.1021/ja909118a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK (1991) Anantin—a peptide antagonist of the atrial-natriuretic-factor (ANF) 1. Producing organism, fermentation, isolation and biological activity. J Antibiot 44(2):164–171

    Article  CAS  PubMed  Google Scholar 

  45. Wyss DF, Lahm HW, Manneberg M, Labhardt AM (1991) Anantin—a peptide antagonist of the atrial-natriuretic factor (ANF) 2. Determination of the primary sequence by NMR on the basis of proton assignments. J Antibiot 44(2):172–180

    Article  CAS  PubMed  Google Scholar 

  46. Yan KP, Li YY, Zirah S, Goulard C, Knappe TA, Marahiel MA, Rebuffat S (2012) Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. ChemBioChem 13(7):1046–1052. doi:10.1002/cbic.201200016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our laboratory on lasso peptides has been supported by the NSF and Project X. AJL is a DuPont Young Professor and a Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. James Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, M.O., Link, A.J. Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol 41, 333–344 (2014). https://doi.org/10.1007/s10295-013-1357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1357-4

Keywords

Navigation