Skip to main content
Log in

Selective and efficient extraction of recombinant proteins from the periplasm of Escherichia coli using low concentrations of chemicals

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Experiments were conducted to determine chemicals at low concentrations, which can be utilized for selective release of periplasmic proteins. It was revealed that 80–100 % of the activity of alpha-amylase, beta-lactamase, and Fab D1.3 was retained in the presence of 0.05 and 0.1 % Triton X-100, 0.1 % Tween 20, 0.1 % DOC, 0.01 % BAC, 0.01 % CTAB, 10 mM EDTA, 1 mM and 10 mM DEA, 10 mM NTA, 0.1 and 1 % SHMP, 200 mM urea, 100–500 mM GndCl, and 1 % solvents (hexane, xylene, toluene, benzene, pyridine and isoamyl alcohol). Performance of these chemicals, recognized as generally safe, for selective release of proteins from the periplasm of Escherichia coli was investigated. DOC was a general and very efficient agent, and at concentrations as low as 0.05, 0.1, and 0.025 %, released beta-lactamase, alpha-amylase, and Fab D1.3 selectively with yield factors of 2.7, 2.3, and 3.6 times greater than osmotic shock procedure, respectively. EDTA (1 and 10 mM) discharged Fab D1.3 with efficiency more than osmotic shock (target protein yield of 110 and 138 %, correspondingly). Isoamyl alcohol (10 % v/v) was effective for periplasmic release of alpha-amylase and particularly Fab D1.3, with target protein yields of 75 and 168 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barth S, Huhn M, Mattthey B, Klimka A, Galinski EA, Engert A (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66(4):1572–1579

    Article  CAS  PubMed  Google Scholar 

  2. Berkmen M, Boyd D, Beckwith J (2007) Disulfide bond formation in the periplasm. In: Ehrmann M (ed) The periplasm. ASM Press, Washington, DC, pp 122–140

    Google Scholar 

  3. Betton JM (2007) Periplasmic chaperones and peptidyl-prolyl isomerases. In: Ehrmann M (ed) The periplasm. ASM Press, Washington, DC, pp 141–149

    Google Scholar 

  4. Blanchin-Roland S, Masson JM (1989) Protein secretion controlled by a synthetic gene in Escherichia coli. Protein Eng 2:473–480

    Article  CAS  PubMed  Google Scholar 

  5. Carter P, Kelley RF, Rodrigues ML, Snedecor B, Covarrubias M, Velligan MD, Wong WLT, Rowland AM, Kotts CE, Carver ME, Yang M, Bourell JH, Shepard HM, Henner D (1992) High-level Escherichia coli expression and production of a bivalent humanized antibody fragment. Biotechnology 10:163–167

    Article  CAS  PubMed  Google Scholar 

  6. Chen C, Snedecor B, Nishihara JC, Joly JC, Mcfarland N, Andersen DC, Battersby JE, Champion KM (2004) High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng 85:463–474

    Article  CAS  PubMed  Google Scholar 

  7. Derman AI, Beckwith J (1991) Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J Bacteriol 173:7719–7722

    CAS  PubMed  Google Scholar 

  8. De Sanctis G, Ascoli F, Brunori M (1994) Folding of apominimyoglobin. Proc Natl Acad Sci USA 91:11507–11511

    Article  PubMed  Google Scholar 

  9. Falconer RJ, O’Neill BK, Middelberg PJM (1997) Chemical treatment of Escherichia coli: 1. Extraction of intracellular protein from uninduced cells. Biotechnol Bioeng 53(5):453–458

    Article  CAS  PubMed  Google Scholar 

  10. Falconer RJ, O’Neill BK, Middelberg PJM (1999) Chemical treatment of Escherichia coli: 3. Selective extraction of recombinant protein from cytoplasmic inclusion bodies in intact cells. Biotechnol Bioeng 62(4):455–460

    Article  CAS  PubMed  Google Scholar 

  11. Fischer B, Sumner I, Goodenough P (1993) Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol Bioeng 41:3–13

    Article  CAS  PubMed  Google Scholar 

  12. French C, Keshavarz-Moore E, Ward JM (1996) Development of a simple method for the recovery of recombinant proteins from the Escherichia coli periplasm. Enzyme Microbial Technol 19:332–338

    Article  CAS  Google Scholar 

  13. Geckil H, Ates B, Gencer S, Uckun M, Yilmaz I (2004) Process membrane permeabilization of Gram-negative bacteria with a potassium/hexane aqueous phase system for the release of l-asparaginase: an enzyme used in cancer therapy. Biochemistry 40(2):573–579

    Google Scholar 

  14. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  CAS  PubMed  Google Scholar 

  15. Hancock REW (1984) Alterations in outer membrane permeability. Annu Rev Microbiol 38:237–264

    Article  CAS  PubMed  Google Scholar 

  16. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383–399

    Article  CAS  PubMed  Google Scholar 

  17. Ismail NF, Hamdan S, Mahadi NM, Abdul Murad AM, Rabu A, Bakar FD, Klappa P, Illias RM (2011) A mutant l-asparaginase II signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli. Biotechnol Lett 33:999–1005

    Article  CAS  PubMed  Google Scholar 

  18. Joly JC, Laird MW (2007) Practical applications for periplasmic protein accumulation. In: Ehrmann M (ed) The periplasm. ASM Press, Washington, DC, pp 345–360

    Google Scholar 

  19. Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci USA 95:2773–2777

    Article  CAS  PubMed  Google Scholar 

  20. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Article  CAS  PubMed  Google Scholar 

  21. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1:349–384

    Article  CAS  PubMed  Google Scholar 

  22. Krittanai C, Johnson WCJ (1997) Correcting the circular dichroism spectra of peptides for contributions of absorbing side chains. Anal Biochem 253:57–64

    Article  CAS  PubMed  Google Scholar 

  23. Laird MW, Sampey GC, Johnson K, Zukauskas D, Pierre J, Hong JS, Cooksey BA, Li Y, Galperina O, Karwoski JD, Burke PN (2005) Optimization of BLyS production and purification from Escherichia coli. Protein Expr Purif 39:237–246

    Article  CAS  PubMed  Google Scholar 

  24. Lee SJ, Kim IIC, Kim DM, Bae KH, Byun SM (1998) High-level secretion of recombinant staphylokinase into periplasm of Escherichia coli. Biotechnol Lett 20(2):113–116

    Article  CAS  Google Scholar 

  25. Ljunglöf A, Lacki KM, Muller J, Harinarayan C, Van Reis R, Fahrner R, Van Alstine JM (2007) Ion exchange chromatography of antibody fragments. Biotechnol Bioeng 96(3):515–524

    Article  PubMed  Google Scholar 

  26. Lundell D, Greenberg R, Alroy Y et al (1990) Cytoplasmic and periplasmic expression of a highly basic protein, human interleukin 4, in Escherichia coli. J Ind Microbiol Biotechnol 5(4):215–227

    CAS  Google Scholar 

  27. Matos CFRO, Branston SD, Albiniak A, Dhanoya A, Freedman RB, Keshavarz-Moore E, Robinson C (2012) High-yield export of a native heterologous protein to the periplasm by the Tat translocation pathway in Escherichia coli. Biotechnol Bioeng 109(10):2533–2542

    Article  CAS  PubMed  Google Scholar 

  28. Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13(3):491–551

    Article  CAS  PubMed  Google Scholar 

  29. Miles AJ, Wallace BA (2006) Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem Soc Rev 35:39–51

    Article  CAS  PubMed  Google Scholar 

  30. Naglak TJ, Wang HY (1990) Recovery of a foreign protein from the periplasm of Escherichia coli by chemical permeabilization. Enzyme Microb Technol 12:603–611

    Article  CAS  PubMed  Google Scholar 

  31. Nakae T, Nikaiso H (1975) Outer membrane as a diffusion barrier in Salmonella typhimurium. J Biol Chem 250(18):7359–7365

    CAS  PubMed  Google Scholar 

  32. Nakamoto H, Bardwell JCA (2004) Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta 1694:111–119

    Article  CAS  PubMed  Google Scholar 

  33. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49(1):1–32

    CAS  PubMed  Google Scholar 

  34. Park SJ, Lee SY (1998) Efficient recovery of secretory recombinant proteins from protease negative mutant Escherichia coli strains. Biotechnol Tech 12(11):815–818

    Article  CAS  Google Scholar 

  35. Richarme G, Caldas TD (1997) Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272(25):15607–15612

    Article  CAS  PubMed  Google Scholar 

  36. Sandee D, Tungpradabkul S, Kurokawa Y, Fukui K, Takagi M (2005) Combination of Dsb coexpression and an addition of sorbitol markedly enhanced soluble expression of single-chain Fv in Escherichia coli. Biotechnol Bioeng 91(4):418–424

    Article  CAS  PubMed  Google Scholar 

  37. Sargent MG (1968) Rapid fixed-time assay for penicillinase. J Bacteriol 95(4):1493–1494

    CAS  PubMed  Google Scholar 

  38. Schlapschy M, Theobald I, Mack H, Schottelius M, Wester HJ, Skerra A (2007) Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel 20(6):273–284

    Article  CAS  PubMed  Google Scholar 

  39. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310

    Article  CAS  PubMed  Google Scholar 

  40. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56(3):395–411

    CAS  PubMed  Google Scholar 

  41. Welling GW, Welling-Wester S (1999) Integral membrane proteins. In: Kastner M (ed) Protein liquid chromatography. Elsevier Science BV, Amsterdam, pp 527–549

    Chapter  Google Scholar 

  42. Wunderlich M, Glockshuber R (1993) In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). J Biol Chem 268(33):24547–24550

    CAS  PubMed  Google Scholar 

  43. Zelena K, Krügener S, Lunkenbein S, Zorn H, Berger RG (2009) Functional expression of the lipase gene Lip2 of Pleurotus sapidus in Escherichia coli. Biotechnol Lett 31:395–401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Owen Thomas and Eirini Theodosiou (The University of Birmingham, UK) for their valuable assistance. The contribution of Timothy Dafforn (The University of Birmingham, UK) in CD spectropolarimetry is gratefully acknowledged. Financial support received from the Ministry of Health and Medical Education of Iran for this study is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Jalalirad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalalirad, R. Selective and efficient extraction of recombinant proteins from the periplasm of Escherichia coli using low concentrations of chemicals. J Ind Microbiol Biotechnol 40, 1117–1129 (2013). https://doi.org/10.1007/s10295-013-1307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1307-1

Keywords

Navigation