Skip to main content
Log in

Production of a hybrid 16-membered macrolide antibiotic by genetic engineering of Micromonospora sp. TPMA0041

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Some polyketide-derived bioactive compounds contain sugars attached to the aglycone core, and these sugars often enhance or impart specific biological activity to the molecule. Mycinamicin II, a 16-member macrolide antibiotic produced by Micromonospora griseorubida A11725, contains a branched lactone and two different deoxyhexose sugars, d-desosamine and d-mycinose, at the C-5 and C-21 positions, respectively. We previously engineered an expression plasmid pSETmycinose containing the d-mycinose biosynthesis genes from M. griseorubida A11725. This plasmid was introduced into Micromonospora sp. FERM BP-1076 cells, which produce the 16-membered macrolide antibiotic izenamicin. The resulting engineered strain TPMA0041 produced 23-O-mycinosyl-20-deoxy-izenamicin B1 and 22-O-mycinosyl-izenamicin B2. 23-O-mycinosyl-20-deoxy-izenamicin B1 has been produced by the engineered strain M. rosaria TPMA0001 containing pSETmycinose as 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (=IZI) in our recent study, and 22-O-mycinosyl-izenamicin B2 has previously been synthesized as a macrolide antibiotic TMC-016 with strong antibacterial activity. The production of 22-O-mycinosyl-izenamicin B2 (=TMC-016) was increased when propionate, a precursor of methylmalonyl-CoA, was added to the culture broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anzai Y, Iizaka Y, Li W, Idemoto N, Tsukada S, Koike K, Kinoshita K, Kato F (2009) Production of rosamicin derivatives in Micromonospora rosaria by introduction of D-mycinose biosynthetic gene with ϕC31-derived integration vector pSET152. J Ind Microbiol Biotechnol 36:1013–1021

    Article  PubMed  CAS  Google Scholar 

  2. Anzai Y, Ishii Y, Yoda Y, Kinoshita K, Kato F (2004) The targeted inactivation of polyketide synthase mycAV in the mycinamicin producer, Micromonospora griseorubida, and a complementation study. FEMS Microbiol Lett 238:315–320

    PubMed  CAS  Google Scholar 

  3. Anzai Y, Saito N, Tanaka M, Kinoshita K, Koyama Y, Kato F (2003) Organization of the biosynthetic gene cluster for the polyketide macrolide mycinamicin in Micromonospora griseorubida. FEMS Microbiol Lett 218:135–141

    Article  PubMed  CAS  Google Scholar 

  4. Anzai Y, Sakai A, Li W, Iizaka Y, Koike K, Kinoshita K, Kato F (2010) Isolation and characterization of 23-O-mycinosyl-20-dihydro-rosamicin: a new rosamicin analogue derived from engineered Micromonospora rosaria. J Antibiot 63:325–328

    Article  PubMed  CAS  Google Scholar 

  5. Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672

    Article  PubMed  CAS  Google Scholar 

  6. Choi SU, Lee CK, Hwang YI, Kinoshita H, Nihira T (2004) Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch Microbiol 181:294–298

    Article  PubMed  CAS  Google Scholar 

  7. Combes P, Till R, Bee S, Smith MC (2002) The Streptomyces genome contains multiple pseudo-attB sites for the ϕC31-encoded site-specific recombination system. J Bacteriol 184:5746–5752

    Article  PubMed  CAS  Google Scholar 

  8. Fujiwara T, Watanabe H, Kogami Y, Shiritani Y, Sakakibara H (1989) 19-Deformyl-4′-deoxydesmycosin (TMC-016): synthesis and biological properties of a unique 16-membered macrolide antibiotic. J Antibiot 42:903–912

    Article  PubMed  CAS  Google Scholar 

  9. Ha HS, Hwang YI, Choi SU (2008) Application of conjugation using ϕC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol Lett 30:1233–1238

    Article  PubMed  CAS  Google Scholar 

  10. Han SJ, Park SW, Park BW, Sim SJ (2008) Selective production of epothilone B by heterologous expression of propionyl-CoA synthetase in Sorangium cellulosum. J Microbiol Biotechnol 18:135–137

    PubMed  CAS  Google Scholar 

  11. Hatano K, Higashide E, Shibata M (1976) Studies on juvenimicin, a new antibiotic. I. Taxonomy, fermentation and antimicrobial properties. J Antibiot 29:1163–1170

    Article  PubMed  CAS  Google Scholar 

  12. Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498

    Article  PubMed  CAS  Google Scholar 

  13. Imai H, Suzuki K, Morioka M, Sasaki T, Tanaka K, Kadota S, Iwanami M, Saito T, Eiki H (1989) Izenamicins: macrolide antibiotics. J Antibiot 42:1000–1002

    Article  PubMed  CAS  Google Scholar 

  14. Japan Society of Chemotherapy (1990) Method of MIC determination by broth microdilution method. Chemotherapy (Tokyo) 38:102–105. In Japanese

    Google Scholar 

  15. Kinoshita K, Imura Y, Takenaka S, Hayashi M (1989) Mycinamicins, new macrolide antibiotics. XI. Isolation and structure elucidation of a key intermediate in the biosynthesis of the mycinamicins, mycinamicin VIII. J Antibiot 42:1869–1872

    Article  PubMed  CAS  Google Scholar 

  16. Kishi T, Harada S, Yamana H, Miyake A (1976) Studies on juvenimicin, a new antibiotic. II. Isolation, chemical characterization and structures. J Antibiot 29:1171–1181

    Article  PubMed  CAS  Google Scholar 

  17. Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage ϕC31. J Mol Biol 222:897–908

    Article  PubMed  CAS  Google Scholar 

  18. Lee BK, Puar MS, Patel M, Bartner P, Lotvin J, Munayyer H, Waitz JA (1983) Multistep bioconversion of 20-deoxo-20-dihydro-12,13-deepoxy-12,13-dehydrorosaranolide to 22-hydroxy-23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxy-rosaramicin. J Antibiot 36:742–744

    Article  PubMed  CAS  Google Scholar 

  19. Mo S, Ban YH, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36:1473–1482

    Article  PubMed  CAS  Google Scholar 

  20. Murli S, Kennedy J, Dayem LC, Carney JR, Kealey JT (2003) Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. J Ind Microbiol Biotechnol 30:500–509

    Article  PubMed  CAS  Google Scholar 

  21. Park SR, Han AR, Ban YH, Yoo YJ, Kim EJ, Yoon YJ (2010) Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol 85:1227–1239

    Article  PubMed  CAS  Google Scholar 

  22. Rheims H, Schumann P, Rohde M, Stackebrandt E (1998) Verrucosispora gifhornensis gen. nov., sp. nov., a new member of the actinobacterial family Micromonosporaceae. Int J Syst Bacteriol 48(Pt 4):1119–1127

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez E, McDaniel R (2001) Combinatorial biosynthesis of antimicrobials and other natural products. Curr Opin Microbiol 4:526–534

    Article  PubMed  CAS  Google Scholar 

  24. Salas JA, Méndez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232

    Article  PubMed  CAS  Google Scholar 

  25. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  26. Sioud S, Aigle B, Karray-Rebai I, Smaoui S, Bejar S, Mellouli L (2009) Integrative gene cloning and expression system for Streptomyces sp. US 24 and Streptomyces sp. TN 58 bioactive molecule producing strains. J Biomed Biotechnol 2009:464986

    Article  PubMed  Google Scholar 

  27. Tsukada S, Anzai Y, Li S, Kinoshita K, Sherman DH, Kato F (2010) Gene targeting for O-methyltransferase genes, mycE and mycF, on the chromosome of Micromonospora griseorubida producing mycinamicin with a disruption cassette containing the bacteriophage ϕC31 attB attachment site. FEMS Microbiol Lett 304:148–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shingo Fujisaki (Toho University) for help with LC–MS analysis, Dr. Wei Li (Toho University) for help with NMR analysis, and Ms. Yumi Ichikawa (Toho University) for help with antibacterial activity assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yojiro Anzai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, A., Mitsumori, A., Furukawa, M. et al. Production of a hybrid 16-membered macrolide antibiotic by genetic engineering of Micromonospora sp. TPMA0041. J Ind Microbiol Biotechnol 39, 1693–1701 (2012). https://doi.org/10.1007/s10295-012-1173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1173-2

Keywords

Navigation