Skip to main content
Log in

Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of l-arginine production

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The genes involved in l-arginine biosynthesis in Corynebacterium crenatum are organized as the argCJBDFRGH cluster like in Corynebacterium glutamicum. However, the argC~H cluster of the C. crenatum SYPA 5-5, which is an industrialized l-arginine producer, had a lethal mutation occurring in the ArgR repressor encoding gene. The argC~H cluster with an inactive argR was overexpressed in E. coli and C. crenatum. In the recombinant E. coli JM109 enzyme activities were increased, and more l-arginine was found in the supernatants from l-glutamine. When the argC~H cluster was overexpressed in C. crenatum under its native promoter Parg, l-arginine production was increased by 24.9%, but the presence of the recombinant plasmid pJC-9039 had a negative effect on cell growth. Surprisingly, the DO value of the recombinant strain dropped gently and stayed at a lower level from 24 h to the end of fermentation. The results demonstrated an increasing utilization of oxygen and the distinct enhancement of unit cell l-arginine yields with the cluster argC~H-bearing in C. crenatum SYPA-9039. This study provides a kind of Corynebacteria with improved l-arginine-producing ability and an efficient elevation for producing amino acid. Moreover, the promoter Parg would be used as a valid promoter to express objective genes for metabolic engineering in Corynebacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF (2010) RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol. doi:10.1016/j.jbiotec.2010.07.001

  2. Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (1987) Current protocols in molecular biology, vol 1 and 2. Green Publishing Associates and Wiley Inter-science, New York, NY 12:1C12.12

  3. Billhemier JT, Carnevale HN, Leisinger T, Eckhardt T, Jones EE (1976) Ornithine delta-transaminase activity in Escherichia coli: its identity with acetylornithine delta-transaminase. J Bacteriol 127(3):1315–1323

    PubMed  CAS  Google Scholar 

  4. Blombach B, Hans S, Bathe B, Eikmanns BJ (2008) Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Envir Microbiol 75(2):419–427. doi:10.1128/aem.01844-08

    Article  Google Scholar 

  5. Cremer J, Eggeling L, Sahm H (1990) Cloning the dapA dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum. Mol Gen Genet 220(3):478–480. doi:10.1007/bf00391757

    Article  CAS  Google Scholar 

  6. Faurie R, Thommel J, Bathe B, Debabov V, Huebner S, Ikeda M, Kimura E, Marx A, Möckel B, Mueller U, Pfefferle W, Ikeda M (2003) Amino acid production processes. In: Microbial production of l-amino acids, vol 79. Adv Biochem Eng/Biotechnol, Springer Berlin/Heidelberg, pp 1–35. doi:10.1007/3-540-45989-8_1

  7. Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. Microbiol Monogr 5:219–257. doi:10.1007/7171_2006_061

    Article  Google Scholar 

  8. Grillo MA, Colombatto S (2004) Arginine revisited: minireview article. Amino Acids 26(4):345–351. doi:10.1007/s00726-004-0081-9

    Article  PubMed  CAS  Google Scholar 

  9. Hänßler E, Müller T, Jeßberger N, Völzke A, Plassmeier J, Kalinowski J, Krämer R, Burkovski A (2007) FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum. Appl Microbiol Biot 76(3):625–632. doi:10.1007/s00253-007-0929-5

    Article  Google Scholar 

  10. Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-citrulline producer. Appl Environ Microbiol 75(6):1635–1641. doi:10.1128/aem.02027-08

    Article  PubMed  CAS  Google Scholar 

  11. Jermyn M (1975) Increasing the sensitivity of the anthrone method for carbohydrate. Anal Biochem 68(1):332–335. doi:10.1016/0003-2697(75)90713-7

    Article  PubMed  CAS  Google Scholar 

  12. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25. doi:S0168165603001548

    Article  PubMed  CAS  Google Scholar 

  13. Koffas M, Roberge C, Lee K, Stephanopoulos G (1999) Metabolic engineering. Annu Rev Biomed Eng 1:535–557. doi:10.1146/annurev.bioeng.1.1.535

    Article  PubMed  CAS  Google Scholar 

  14. Kumar A, Vij N, Randhawa GS (2003) Isolation and symbiotic characterization of transposon Tn5-induced arginine auxotrophs of Sinorhizobium meliloti. Indian J Exp Biol 41(10):1198–1204

    PubMed  CAS  Google Scholar 

  15. Larsen R (2005) Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis. J Biol Chem 280(19):19319–19330. doi:10.1074/jbc.M413983200

    Article  PubMed  CAS  Google Scholar 

  16. Maghnouj A, Abu-Bakr AAW, Baumberg S, Stalon V, Van der Wauven C (2000) Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family, vol 191. Blackwell Publishing Ltd. doi:10.1111/j.1574-6968.2000.tb09344.x

  17. Martin PR, Mulks MH (1992) Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae. J Bacteriol 174(8):2694–2701. doi:0021-9193/92/082694-08$02.00/0

    PubMed  CAS  Google Scholar 

  18. Mountain A, McChesney J, Smith MC, Baumberg S (1986) Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli. J Bacteriol 165(3):1026–1028. doi:0021-9193/86/031026-03$02.00/0

    PubMed  CAS  Google Scholar 

  19. Ohnishi J (2008) Characterization of mutations induced by N-methyl-N′-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mut Res/Gen Tox Environ Mutag 649(1–2):239–244. doi:10.1016/j.mrgentox.2007.10.003

    Article  CAS  Google Scholar 

  20. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242(2):265–274. doi:10.1016/j.femsle.2004.11.014

    Article  PubMed  CAS  Google Scholar 

  21. Panhorst M, Sorger-Herrmann U, Wendisch VF (2010) The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J Biotechnol. doi:10.1016/j.jbiotec.2010.07.015

  22. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460. doi:10.1016/j.copbio.2008.08.007

    Article  PubMed  CAS  Google Scholar 

  23. Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiol 142(Pt 1):99–108. doi:10.1099/13500872-142-1-99

    CAS  Google Scholar 

  24. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  25. Takahara K, Akashi K, Yokota A (2007) Continuous spectrophotometric assays for three regulatory enzymes of the arginine biosynthetic pathway. Anal Biochem 368(2):138–147. doi:10.1016/j.ab.2007.06.032

    Article  PubMed  CAS  Google Scholar 

  26. Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45(5):362–367. doi:10.1007/s00284-002-3728-3

    Article  PubMed  CAS  Google Scholar 

  27. Troshina O, Hansel A, Lindblad P (2001) Cloning, characterization, and functional expression in Escherichia coli of argH encoding argininosuccinate lyase in the cyanobacterium Nostoc sp. strain PCC 73102. Curr Microbiol 43(4):260–264. doi:10.1007/s002840010298

    Article  PubMed  CAS  Google Scholar 

  28. Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotechnol 16(7):999–1009

    CAS  Google Scholar 

  29. Wolf E, Weiss R (1980) Acetylglutamate kinase. A mitochondrial feedback-sensitive enzyme of arginine biosynthesis in Neurospora crassa. J Biol Chem 255(19):9189

    PubMed  CAS  Google Scholar 

  30. Xu H, Dou WF, Xu HY, Zhang XM, Rao ZM, Shi ZP, Xu ZH (2009) A two-stage oxygen supply strategy for enhanced l-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J 43(1):41–51. doi:10.1016/j.bej.2008.08.007

    Article  CAS  Google Scholar 

  31. Xu MJ, Rao ZM, Xu H, Lan CY, Dou WF, Zhang XM, Xu HY, Jin JA, Xu ZH (2011) Enhanced production of l-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol 163(6):707–719. doi:10.1007/s12010-010-9076-z

    Article  PubMed  CAS  Google Scholar 

  32. Xu Y, Labedan B, Glansdorff N (2007) Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev 71(1):36–47. doi:10.1128/mmbr.00032-06

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Andreas Burkovski (Universität zu Köln, Germany) for the generous donation of plasmid pJC1. This work was supported by the High-tech Research and Development Programs of China (2007AA02Z207), the National Basic Research Program of China (2007CB707804), the National Natural Science Foundation of China (30970056), and the Program for New Century Excellent Talents in the University (NCET-07-0380, NCET-10-0459), the Fundamental Research Funds for the Central Universities (JUSRP31001), the Program of Introducing Talents of Discipline to Universities (111-2-06), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Rao or Zhenghong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Rao, Z., Yang, J. et al. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of l-arginine production. J Ind Microbiol Biotechnol 39, 495–502 (2012). https://doi.org/10.1007/s10295-011-1042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1042-4

Keywords

Navigation