Skip to main content
Log in

Enzyme catalysis with small ionic liquid quantities

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Buncel E, Rajagopal S (1990) Sovatochronism and solvent polarity scales. Acc Chem Res 23:226–231

    Article  CAS  Google Scholar 

  2. Dominguez de Maria P (2008) “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew Chem Int Ed 47:2–10

    Article  Google Scholar 

  3. Ferrer B, Garcia H, Schultz KP, Nelsen SF (2007) Mixed valence compounds as probes to determine the polarity of 1-butyl-3-methylimidazolium ionic liquids. J Phys Chem B 111:13967–13970

    Article  PubMed  CAS  Google Scholar 

  4. Gathergood N, Garcia MT, Scammells PJ (2004) Biodegradable ionic liquids: part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175

    Article  CAS  Google Scholar 

  5. Guo Z, Xu X (2005) New opportunity for enzymatic modification of fats and oils with industrial potentials. Org Biomol Chem 3:2615–2619

    Article  PubMed  CAS  Google Scholar 

  6. Habulin M, Sabeder S, Paljevac M, Knez Z (2007) Lipase-catalyzed esterification of citronellol with lauric acid in supercritical carbon dioxide/co-solvent media. J Supercrit Fluids 43:199–203

    Article  CAS  Google Scholar 

  7. Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086

    Article  PubMed  CAS  Google Scholar 

  8. Heinsman NWJT, Schroën CGPH, Van Der Padt A, Franssen MCR, Boom FM, van’t Riet K (2003) Substrate sorption into the polymer matrix of Novozyme 435 and its effect on the enantiomeric ratio determination. Tetrahedron Asymmetry 14:2699–2704

    Article  CAS  Google Scholar 

  9. Itoh T, Han S, Matsushita Y, Hayase S (2004) Enhanced enantioselectivity and remarkable acceleration on the lipase-catalyzed transesterification using novel ionic liquids. Green Chem 6:437–439

    Article  CAS  Google Scholar 

  10. Itoh T, Matsushita Y, Abe Y, Han S, Wada S, Hayase S, Kawatsura M, Takai S, Morimoto M, Hirose Y (2006) Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid. Chem Eur J 12:9228–9237

    Article  CAS  Google Scholar 

  11. Kim M-J, Lee JK (2004) Enzymes coated with ionic liquids. US 2004/0087462 A1

  12. Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571

    Article  PubMed  CAS  Google Scholar 

  13. Lau RM, Sorgdrager MJ, Carrea G, van Rantwijk F, Secundo F, Sheldon RA (2004) Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6:483–487

    Article  Google Scholar 

  14. Lee JK, Kim M-J (2002) Ionic liquid-coated enzyme for biocatalysis in organic solvent. J Org Chem 67:6845–6847

    Article  PubMed  CAS  Google Scholar 

  15. Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, Weinheim

    Book  Google Scholar 

  16. López-Martin I, Burello E, Davey PN, Seddon KR, Rothenberg G (2007) Anion and cation effects on imidazolium salt melting points: a descriptor modelling study. Chem Phys Chem 8:690–695

    PubMed  Google Scholar 

  17. Lozano P, de Diego T, Iborra JL (2006) Immobilization of enzymes for use in ionic liquids. In: Guisan JM (ed) Immobilisation of enzymes and cells, 2nd edn. Methods in biotechnology, vol 22. Humana, Totowa, pp 257–268

    Chapter  Google Scholar 

  18. Lozano P, De Diego T, Carrié D, Vaultier M, Iborra JL (2001) Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett 23:1529–1533

    Article  CAS  Google Scholar 

  19. Lozano P, Piamtongkam R, Kohns K, De Diego T, Vaultier M, Iborra JL (2007) Ionic liquids improve citronellol ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media. Green Chem 9:780–784

    Article  CAS  Google Scholar 

  20. Lozano P (2010) Enzymes in neoteric solvents: from one-phase to multiphase systems. Green Chem 12:555–569

    Article  CAS  Google Scholar 

  21. Moniruzzaman M, Kamiya N, Goto M (2010) Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem 8:2887–2899

    Article  PubMed  CAS  Google Scholar 

  22. Mutschler J, Rausis T, Bourgeois J-M, Bastian C, Zufferey D, Mohrenz IV, Fischer F (2009) Ionic liquid-coated immobilized lipase for the synthesis of methylglucose fatty acid esters. Green Chem 11:1793–1800

    Article  CAS  Google Scholar 

  23. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14:432–437

    Article  PubMed  CAS  Google Scholar 

  24. Park S, Kazlauskas RJ (2001) Improved preparation and use of room temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66:8395–8401

    Article  PubMed  CAS  Google Scholar 

  25. Poole FC (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    Article  PubMed  CAS  Google Scholar 

  26. Reichardt C (2007) Solvents and solvent effects: an introduction. Org Process Res Dev 11:105–113

    Google Scholar 

  27. Reichardt C (2005) Polarity on ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351

    Article  CAS  Google Scholar 

  28. Van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  PubMed  Google Scholar 

  29. Ventura SPM, Gonçalves AMM, Gonçalves F, Coutinho JAP (2010) Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquat Toxicol 96:290–297

    Article  PubMed  CAS  Google Scholar 

  30. Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, Weinheim

  31. Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol 37:19–28

    Article  CAS  Google Scholar 

  32. Zhao H (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B Enzym 37:16–25

    Article  CAS  Google Scholar 

  33. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85:891–907

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work on ionic liquid coated lipases was possible through the support by RealTech, Project No: 18644.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, F., Mutschler, J. & Zufferey, D. Enzyme catalysis with small ionic liquid quantities. J Ind Microbiol Biotechnol 38, 477–487 (2011). https://doi.org/10.1007/s10295-010-0908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0908-1

Keywords

Navigation