Skip to main content
Log in

Influence of induction conditions on the expression of carbazole dioxygenase components (CarAa, CarAc, and CarAd) from Pseudomonas stutzeri in recombinant Escherichia coli using experimental design

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Carbazole 1,9a-dioxygenase (CarA), the first enzyme in the carbazole degradation pathway used by Pseudomonas sp., was expressed in E. coli under different conditions defined by experimental design. This enzyme depends on the coexistence of three components containing [2Fe–2S] clusters: CarAa, CarAc, and CarAd. The catalytic site is present in CarAa. The genes corresponding to components of carbazole 1,9a-dioxygenase from P. stutzeri were cloned and expressed by salt induction in E. coli BL21-SI (a host that allows the enhancement of overexpressed proteins in the soluble fraction), using the vector pDEST™14. The expression of these proteins was performed under different induction conditions (cell concentration, temperature, and time), with the help of two-level factorial design. Cell concentration at induction (measured by absorbance at 600 nm) was tested at 0.5 and 0.8. After salt induction, expression was performed at 30 and 37°C, for 4 h and 24 h. Protein expression was evaluated by densitometry analysis. Expression of CarAa was enhanced by induction at a lower cell concentration and temperature and over a longer time, according to the analysis of the experimental design results. The results were validated at Abs ind = 0.3, 25°C, and 24 h, at which CarAa expression was three times higher than under the standard condition. The behavior of CarAc and CarAd was the inverse, with the best co-expression condition tested being the standard one (Abs ind = 0.5, T = 37°C, and t = 4 h). The functionality of the proteins expressed in E. coli was confirmed by the degradation of 20 ppm carbazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421. doi:10.1016/S0958-1669(99)00003-8

    Article  PubMed  CAS  Google Scholar 

  2. Benedik MJ, Gibbs PR, Riddle RR, Willson RC (1998) Microbial denitrogenation of fossil fuels. Trends Biotechnol 16:390–395. doi:10.1016/S0167-7799(98)01237-2

    Article  PubMed  CAS  Google Scholar 

  3. Bhandari P, Gowrishankar J (1997) An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. J Bacteriol 179:4403–4406

    PubMed  CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  5. Cao Y, Xia Q, Fang B (2006) Optimization of expression of dhaT gene encoding 1,3-propanediol oxidoreductase from Klebsiella pneumoniae in Escherichia coli using the methods of uniform design and regression analysis. J Chem Technol Biotechnol 81:109–112. doi:10.1002/jctb.1360

    Article  CAS  Google Scholar 

  6. Chen Y, Xing X-H, Ye F, Kuang Y, Luo M (2007) Production of MBP-HepA fusion protein in recombinant Escherichia coli by optimization of culture medium. Biochem Eng J 34:114–121. doi:10.1016/j.bej.2006.11.020

    Article  CAS  Google Scholar 

  7. Choi WC, Oh BC, Kim HK, Lee ES, Oh TK (2002) Medium optimization for phytase production by recombinant Escherichia coli using statistical experimental design. J Microbiol Biotechnol 12:490–496

    CAS  Google Scholar 

  8. Chuan YP, Lua LHL, Middelberg APJ (2008) High-level expression of soluble viral structural protein in Escherichia coli. J Biotechnol 134:64–71. doi:10.1016/j.jbiotec.2007.12.004

    Article  PubMed  CAS  Google Scholar 

  9. De León A, Jiménez-Islas H, González-Cuevas M, Barba de la Rosa AP (2004) Analysis of the expression of the Trichoderma harzianum ech42 gene in two isogenic clones of Escherichia coli by surface response methodology. Process Biochem 39:2173–2178. doi:10.1016/j.procbio.2003.11.013

    Article  Google Scholar 

  10. Donovan RS, Robinson CW, Glick BR (1996) Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol Biotechnol 16:145–154. doi:10.1007/BF01569997

    CAS  Google Scholar 

  11. Fontani S, Niccolai A, Kapat A, Olivieri R (2003) Studies on the maximization of recombinant Helicobacter pylori neutrophil-activating protein production in Escherichia coli: application of Taguchi robust design and response surface methodology for process optimization. World J Microbiol Biotechnol 19:711–717. doi:10.1023/A:1025104119260

    Article  CAS  Google Scholar 

  12. García-Arrazola R, Dawson P, Buchanan I, Doyle B, Fearn T, Titchener-Hooker N, Baganz F (2005) Evaluation of the effects and interactions of mixing and oxygen transfer on the production of Fab’ antibody fragments in Escherichia coli fermentation with gas blending. Bioprocess Biosyst Eng 27:365–374. doi:10.1007/s00449-005-0414-4

    Article  PubMed  Google Scholar 

  13. Han GH, Shin H-J, Kim SW (2008) Optimization of bio-indigo production by recombinant E. coli harboring fmo gene. Enzyme Microb Technol 42:617–623. doi:10.1016/j.enzmictec.2008.02.004

    Article  CAS  Google Scholar 

  14. Hao DC, Zhu PH, Yang SL, Yang L (2006) Optimization of recombinant Cytochrome P450 2C9 protein production in Escherichia coli DH5α by statistically-based experimental design. World J Microbiol Biotechnol 22:1169–1176. doi:10.1007/s11274-006-9158-9

    Article  CAS  Google Scholar 

  15. Hao DC, Zhu PH, Yang SL, Yang L (2007) Enhanced production of human Cytochrome P450 2C9 by Escherichia coli BL21(DE3)pLysS through the novel use of grey relational analysis and Plackett–Burman design. World J Microbiol Biotechnol 23:71–78. doi:10.1007/s11274-006-9194-5

    Article  CAS  Google Scholar 

  16. Hernández VEB, Maldonado LMTP, Rivero EM, Barba de la Rosa AP, Acevedo LGO, De León Rodríguez A (2008) Optimization of human interferon gamma production in Escherichia coli by response surface methodology. Biotechnol Bioprocess Eng 13:7–13. doi:10.1007/s12257-007-0126-5

    Article  Google Scholar 

  17. Hisatsuka K, Sato M (1994) Microbial transformation of carbazole to anthranilic acid by Pseudomonas stutzeri. Biosci Biotechnol Biochem 58:213–214. doi:10.1271/bbb.58.213

    Article  CAS  Google Scholar 

  18. Hounsa CG, Aubry JM, Dubourguier HC, Hornez JP (1996) Application of factorial and Doehlert designs for optimization of pectate lyase production by a recombinant Escherichia coli. Appl Microbiol Biotechnol 45:764–770. doi:10.1007/s002530050760

    Article  PubMed  CAS  Google Scholar 

  19. Islam RS, Tisi D, Levy MS, Lye GJ (2007) Framework for the rapid optimization of soluble protein expression in Escherichia coli combining microscale experiments and statistical experimental design. Biotechnol Prog 23:785–793. doi:10.1021/bp070059a

    PubMed  CAS  Google Scholar 

  20. Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298. doi:10.1007/s00253-004-1814-0

    Article  PubMed  CAS  Google Scholar 

  21. Kilbane II JJ (2004) Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Petroleum biotechnology, vol 151: development and perspectives, studies in surface science and catalysis, chap 2. Elsevier, Mexico City

  22. Kotik M, Kocanová M, Maresová H, Kyslík P (2004) High-level expression of a fungal pyranose oxidase in high cell-density fed-batch cultivations of Escherichia coli using lactose as inducer. Protein Expr Purif 36:61–69. doi:10.1016/j.pep.2004.02.011

    Article  PubMed  CAS  Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  24. Larentis AL, Almeida RV, Cardoso AM, Almeida WI, Rössle SC, Bisch PM, Martins OB, Alves TLM (2006) Homology modeling of the oxygenase component of carbazole 1,9a-dioxygenase (CarAa) involved in petroleum denitrogenation pathway of Pseudomonas sp. Braz Arch Biol Technol 49:53–61

    CAS  Google Scholar 

  25. Larentis AL, Almeida RV, Rössle SC, Cardoso AM, Almeida WI, Bisch PM, Alves TLM, Martins OB (2006) Expression and homology modeling of 2′-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarB) from Pseudomonas stutzeri carbazole degradation pathway. Cell Biochem Biophys 44:530–538. doi:10.1385/CBB:44:3:530

    Article  PubMed  CAS  Google Scholar 

  26. Larentis AL, Alves TLM, Martins OB (2005) Cloning and expression of meta-cleavage enzyme (CarB) of carbazole degradation pathway from Pseudomonas stutzeri. Braz Arch Biol Technol 48:127–134. doi:10.1590/S1516-89132005000400016

    Article  Google Scholar 

  27. Lee KM, Rhee CH, Kang CK, Kim JH (2006) Sequential and simultaneous statistical optimization by dynamic design of experiment for peptide overexpression in recombinant Escherichia coli. Appl Biochem Biotechnol 135:59–80. doi:10.1385/ABAB:135:1:59

    Article  PubMed  CAS  Google Scholar 

  28. Lee KM, Rhee CH, Kang CK, Kim JH (2006) Statistical medium formulation and process modeling by mixture design of experiment for peptide overexpression in recombinant Escherichia coli. Appl Biochem Biotechnol 135:81–100. doi:10.1385/ABAB:135:1:81

    Article  PubMed  CAS  Google Scholar 

  29. Leite LF, Neto JNN, Bevilaqua JV (2005) Biorefineries and biofuels: current activities and future vision of Petrobras. ACS Div Fuel Chem 50:726–727

    CAS  Google Scholar 

  30. Lo PK, Hassan O, Ahmad A, Muhammad Mahadi N, Illias RM (2007) Excretory over-expression of Bacillus sp. G1 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: optimization of the cultivation conditions by response surface methodology. Enzyme Microb Technol 40:1256–1263. doi:10.1016/j.enzmictec.2006.09.020

    Article  CAS  Google Scholar 

  31. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    PubMed  CAS  Google Scholar 

  32. Maldonado LMTP, Hernández VEB, Rivero EM, Barba de la Rosa AP, Flores JLF, Acevedo LGO, De León Rodríguez A (2007) Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: the case of human interferon beta. Biomol Eng 24:217–222. doi:10.1016/j.bioeng.2006.10.001

    Article  PubMed  CAS  Google Scholar 

  33. Manderson D, Dempster R, Chisti Y (2006) A recombinant vaccine against hydatidosis: production of the antigen in Escherichia coli. J Ind Microbiol Biotechnol 33:173–182. doi:10.1007/s10295-005-0046-3

    Article  PubMed  CAS  Google Scholar 

  34. Niccolai A, Fontani S, Kapat A, Olivieri R (2003) Maximization of recombinant Helicobacter pylori neutrophil activating protein production in Escherichia coli: improvement of a chemically defined medium using response surface methodology. FEMS Microbiol Lett 221:257–262. doi:10.1016/S0378-1097(03)00184-8

    Article  PubMed  CAS  Google Scholar 

  35. Nikerel İE, Toksoy E, Kirdar B, Yildirim R (2005) Optimizing medium composition for TaqI endonuclease production by recombinant Escherichia coli cells using response surface methodology. Process Biochem 40:1633–1639. doi:10.1016/j.procbio.2004.06.017

    Article  CAS  Google Scholar 

  36. Oliveira C, Costa S, Teixeira JA, Domingues L (2009) cDNA cloning and functional expression of the α-d-galactose-binding lectin frutalin in Escherichia coli. Mol Biotechnol 43:212–220. doi:10.1007/s12033-009-9191-7

    Article  PubMed  CAS  Google Scholar 

  37. Pan H, Xie Z, Bao W, Zhang J (2008) Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology. Biochem Eng J 42:133–138. doi:10.1016/j.bej.2008.06.007

    Article  CAS  Google Scholar 

  38. Pan HF, Bao WN, Xie ZP, Zhang JG (2010) Optimization of medium composition for cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology. Afr J Biotechnol 9:1366–1373

    CAS  Google Scholar 

  39. Park H-S, Kayser KJ, Kwak JH, Kilbane JJ II (2004) Heterologous gene expression in Thermus thermophilus: β-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase. J Ind Microbiol Biotechnol 31:189–197. doi:10.1007/s10295-004-0130-0

    Article  PubMed  CAS  Google Scholar 

  40. Pistorino M, Pfeifer BA (2009) Efficient experimental design and micro-scale medium enhancement of 6-deoxyerythronolide B production through Escherichia coli. Biotechnol Prog 25:1364–1371. doi:10.1002/btpr.250

    Article  PubMed  CAS  Google Scholar 

  41. Ren X, Yu D, Han S, Feng Y (2006) Optimization of recombinant hyperthermophilic esterase production from agricultural waste using response surface methodology. Bioresour Technol 97:2345–2349. doi:10.1016/j.biortech.2005.10.027

    Article  PubMed  CAS  Google Scholar 

  42. Riddle RR, Gibbs PR, Willson RC, Benedik MJ (2003) Recombinant carbazole-degrading strains for enhanced petroleum processing. J Ind Microbiol Biotechnol 30:6–12. doi:10.1007/s10295-002-0005-1

    PubMed  CAS  Google Scholar 

  43. Rodrigues MI, Iemma AF (2005) Planejamento de experimentos e otimização de processos: uma estratégia seqüencial de planejamentos. Casa do Pão Editora, Campinas

    Google Scholar 

  44. Sato SI, Nam J-W, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J Bacteriol 179:4850–4858

    PubMed  CAS  Google Scholar 

  45. Shin CS, Hong MS, Bae CS, Lee J (1997) Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol Prog 13:249–257. doi:10.1021/bp970018m

    Article  PubMed  CAS  Google Scholar 

  46. Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128. doi:10.1016/j.jbiotec.2004.08.004

    Article  PubMed  Google Scholar 

  47. Sunitha K, Kim Y-O, Lee J-K, Oh T-K (2000) Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli. Biochem Eng J 5:51–56. doi:10.1016/S1369-703X(99)00062-5

    Article  CAS  Google Scholar 

  48. Sunitha K, Lee J-K, Oh T-K (1999) Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Biosyst Eng 21:477–481. doi:10.1007/PL00009086

    CAS  Google Scholar 

  49. Swalley SE, Fulghum JR, Chambers SP (2006) Screening factors effecting a response in soluble protein expression: formalized approach using design of experiments. Anal Biochem 351:122–127. doi:10.1016/j.ab.2005.11.046

    Article  PubMed  CAS  Google Scholar 

  50. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222. doi:10.1007/s00253-006-0465-8

    Article  PubMed  CAS  Google Scholar 

  51. Urban A, Ansmant I, Motorin Y (2003) Optimisation of expression and purification of the recombinant Yol066 (Rib2) protein from Saccharomyces cerevisiae. J Chromatogr B 786:187–195. doi:10.1016/S1570-0232(02)00742-0

    Article  CAS  Google Scholar 

  52. Volontè F, Marinelli F, Gastaldo L, Sacchi S, Pilone MS, Pollegioni L, Molla G (2008) Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E. coli. Protein Expr Purif 61:131–137. doi:10.1016/j.pep.2008.05.010

    Article  PubMed  Google Scholar 

  53. Wang Y-h, Jing C-f, Yang B, Mainda G, Dong M-l, Xu A-l (2005) Production of a new sea anemone neurotoxin by recombinant Escherichia coli: optimization of culture conditions using response surface methodology. Process Biochem 40:2721–2728. doi:10.1016/j.procbio.2004.12.024

    Article  CAS  Google Scholar 

  54. Zhang X, Li Y, Zhuge B, Tang X, Shen W, Rao Z, Fang H, Zhuge J (2006) Optimization of 1,3-propanediol production by novel recombinant Escherichia coli using response surface methodology. J Chem Technol Biotechnol 81:1075–1078. doi:10.1002/jctb.1538

    Article  CAS  Google Scholar 

  55. Zhao J, Wang Y, Chu J, Zhang S, Zhuang Y, Yuan Z (2008) Statistical optimization of medium for the production of pyruvate oxidase by the recombinant Escherichia coli. J Ind Microbiol Biotechnol 35:257–262. doi:10.1007/s10295-007-0301-x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Petrobras supported this work. We thank to Iuri Bastos M.Sc. (UFRJ) for the densitometry analysis using the QuantiScan 1.25 program, Dr. Márcio Schwaab and Prof. José Carlos Pinto (COPPE/UFRJ) for fruitful discussions, and the reserchers of the Setor de Imunobiológicos laboratory at INCQS/Fiocruz for making available the QuantiOne 4.4.1 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Leites Larentis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larentis, A.L., Sampaio, H.C.C., Martins, O.B. et al. Influence of induction conditions on the expression of carbazole dioxygenase components (CarAa, CarAc, and CarAd) from Pseudomonas stutzeri in recombinant Escherichia coli using experimental design. J Ind Microbiol Biotechnol 38, 1045–1054 (2011). https://doi.org/10.1007/s10295-010-0879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0879-2

Keywords

Navigation