Skip to main content
Log in

Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A new fungus, Pestalotiopsis sp. XE-1, which produced ethanol from xylose with yield of 0.47 g ethanol/g of consumed xylose was isolated. It also produced ethanol from arabinose, glucose, fructose, mannose, galactose, cellobiose, maltose, and sucrose with yields of 0.38, 0.47, 0.45, 0.46, 0.31, 0.25, 0.31, and 0.34 g ethanol/g of sugar consumed, respectively. It produced maximum ethanol from xylose at pH 6.5, 30°C under a semi-aerobic condition. Acetic acid produced in xylose fermenting process inhibited ethanol production of XE-1. The ethanol yield in the pH-uncontrolled batch fermentation was about 27% lower than that in the pH-controlled one. The ethanol tolerance of XE-1 was higher than most xylose-fermenting, ethanol-producing microbes, but lower than Saccharomyces cerevisiae and Hansenula polymorpha. XE-1 showed tolerance to high concentration of xylose, and was able to grow and produce ethanol even when it was cultivated in 97.71 g/l xylose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

References

  1. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  PubMed  CAS  Google Scholar 

  2. Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75:2304–2311

    Article  PubMed  CAS  Google Scholar 

  3. Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  PubMed  CAS  Google Scholar 

  4. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  PubMed  CAS  Google Scholar 

  5. du Preez JC (1983) Fermentation of d-xylose to ethanol by a strain of Candida shehatae. Biotechnol Lett 5:357–362

    Article  CAS  Google Scholar 

  6. Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microbiol Technol 43:120–123

    Article  CAS  Google Scholar 

  7. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  Google Scholar 

  8. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  Google Scholar 

  9. Jeewon R, Liew ECY, Simpson JA, Hodgkiss IJ, Hyde KD (2003) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383

    Article  PubMed  CAS  Google Scholar 

  10. Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268

    Article  PubMed  CAS  Google Scholar 

  11. Jeffries T, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161

    PubMed  CAS  Google Scholar 

  12. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin Y-S, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  PubMed  CAS  Google Scholar 

  13. Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S (2009) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100:2392–2398

    Article  PubMed  CAS  Google Scholar 

  14. Metz AM, Haddad A, Worapong J, Long DM, Ford EJ, Hess WM, Strobel GA (2000) Induction of the sexual stage of Pestalotiopsis microspora, a taxol-producing fungus. Microbiology 146:2079–2089

    PubMed  CAS  Google Scholar 

  15. Meyer PS, du Preez JC, Kilian SG (1993) Effect of temperature and pH on Candida blankii in chemostat culture. World J Microbiol Biotechnol 8:434–438

    Article  Google Scholar 

  16. Meyrial V, Delgenes JP, Romieu C, Moletta R, Gounot AM (1995) Ethanol tolerance and activity of plasma membrane ATPase in Pichia stipitis grown on d-xylose or on d-glucose. Enzym Microbial Technol 17:535–540

    Article  CAS  Google Scholar 

  17. Oliva JM, Negro MJ, Sáez F, Ballesteros I, Manzanares P, González A, Ballesteros M (2006) Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochem 41:1223–1228

    Article  CAS  Google Scholar 

  18. Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477

    Article  PubMed  CAS  Google Scholar 

  19. Schnerder H, Wang PY, Chan YK, Maleszka R (1981) Conversion of d-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:92–98

    Google Scholar 

  20. Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32:283–289

    Article  PubMed  CAS  Google Scholar 

  21. Steyaert RL (1953) New and old species of Pestalotiopsis. Trans Brit Mycol Soc 36:81–89

    Article  Google Scholar 

  22. Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM (1999) Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J Clin Microbiol 37:1846–1851

    PubMed  CAS  Google Scholar 

  23. Wang PY, Shopsis C, Schneider H (1980) Fermentation of a pentose by yeasts. Biochem Biophys Res Comm 94:248–254

    Article  PubMed  CAS  Google Scholar 

  24. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  PubMed  CAS  Google Scholar 

  25. Zeng AP, Biebl H, Deckwer WD (1990) Effect of pH and acetic acid on growth and 2, 3-butanediol production of Enterobacter aerogenes in continuous culture. Appl Microb Biotechnol 33:485–489

    CAS  Google Scholar 

  26. Zhang YL, Ge HM, Li F, Song YC, Tan RX (2008) New phytotoxic metabolites from Pestalotiopsis sp. HC02, a fungus residing in Chondracris rosee gut. Chem Biodivers 5:2402–2407

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-bo Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Zw., Liang, Jj. & Huang, Rb. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1. J Ind Microbiol Biotechnol 38, 927–933 (2011). https://doi.org/10.1007/s10295-010-0862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0862-y

Keywords

Navigation