Skip to main content
Log in

Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli batch cultivations

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The time-dependent development of cell polarizability and length in Escherichia coli batch fermentations were observed at-line with electrooptical measurements. While using a measurement system with fully automated sample preparation, the development of these properties can be observed with a comparable high frequency (six measurements per hour). The polarizability as well as the mean cell length both increase soon after inoculation and then decline from the growth phase on until the stationary phase is reached. Based on the dynamic behavior of polarizability, the growth phase can be divided into four distinct stages. Changes in the cultivation temperature or the pre-cultivation conditions lead to alterations in the development of the polarizability and mean cell length. Based on the frequency disperse of polarizability measured at four different frequencies from 210 to 2,100 kHz, a prediction model is established that is based on the relation of the polarizability to the metabolic activity. Applying multi-linear partial least squares methods (N-PLS), the model is able to predict the specific acetate synthesis and uptake with a root mean square error of prediction of 0.19 (6% of the mean). The method represents a tool for characterization of different stages with respect to microbial metabolic activity and the energy balance during batch cultivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hewitt CJ, Nebe-Von-Caron G (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state [Review]. Adv Biochem Engin/Biotechnol 89:197–223

    CAS  Google Scholar 

  2. Shapiro HM (2000) Microbial analysis at the single-cell level: tasks and techniques. J Microbiol Meth 42:3–16

    Article  CAS  Google Scholar 

  3. Hewitt CJ, Nebe-Von-Caron G, Nienow AW, McFarlane CM (1999) The use of multi-parameter flow cytometry to compare the physiological response of Escherichia coli W3110 to glucose limitation during batch, fed-batch and continuous culture cultivations. J Biotechnol 75(2–3):251–264

    Article  PubMed  CAS  Google Scholar 

  4. Hewitt CJ, Nebe-Von-Caron G, Nienow AW, McFarlane CM (1999) Use of multi-staining flow cytometry to characterise the physiological state of Escherichia coli W3110 in high cell density fed-batch cultures. Biotech Bioeng 63(6):705–711

    Article  CAS  Google Scholar 

  5. Want A, Thomas ORT, Kara B, Liddell J, Hewitt CJ (2009) Studies related to antibody fragment (Fab) production in Escherichia coli W3110 fed-batch fermentation processes using multiparameter flow cytometry. Cytometry 75A:148–154

    Article  CAS  Google Scholar 

  6. Monfort P, Baleux B (1996) Cell cycle characteristics and changes in membrane potential during growth of Escherichia coli as determined by a cyanine fluorescent dye and flow cytometry. J Microbiol Meth 25:79–86

    Article  Google Scholar 

  7. López-Amorós R, Comas J, Carulla C, Vives-Rego J (1994) Variations in flow cytometric forward scatter signals and cell size in batch cultures of Escherichia coli. FEMS Microbiol Lett 117:225–230

    Article  PubMed  Google Scholar 

  8. Angersbach A, Bunin VD, Ignatov OV (2006) Electro-optical analysis of bacterial cells. In: Stoilov S (ed) Molecular and colloidal electrooptics. M. Dekker Publications, New York, pp 86–112

    Google Scholar 

  9. Bunin VD (2002) Electrooptical analysis of a suspension of cells and its structures. In: Somasundaran P, Hubbardt A (eds) Encyclopedia of surface and colloid science. M. Dekker Publications, New York, pp 2032–2043

  10. Bunin VD, Voloshin AG, Bunina ZF, Shmelev AV (1996) Electrophysical monitoring of culture process of recombinant Escherichia coli strains. Biotech Bioeng 51:720–724

    Article  CAS  Google Scholar 

  11. Junne S, Klein E, Angersbach A, Götz P (2008) Electrooptical measurements for monitoring metabolite fluxes in acetone-butanol-ethanol fermentations. Biotech Bioeng 99(4):862–869

    Article  CAS  Google Scholar 

  12. Wold S (1987) Principal component analysis. Chemom Intell Lab Sys 2:37–52

    Article  CAS  Google Scholar 

  13. Wold S, Geladi P, Esbensen K, Öhman J (1987) Multi-way principal components- and PLS-analysis. J Chemometr 1:41–56

    Article  CAS  Google Scholar 

  14. Andersson CA, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52:1–4

    Article  CAS  Google Scholar 

  15. de Jong S (1993) SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst 18:251–263

    Article  Google Scholar 

  16. Wolfe A (2005) The acetate switch [Review]. Microbiol Mol Biol Rev 69(1):12–50

    Article  PubMed  CAS  Google Scholar 

  17. Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151:693–706

    Article  PubMed  CAS  Google Scholar 

  18. Phue J-N, Shiloach J (2005) Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21, evaluating transcription levels of key genes at different dissolved oxygen conditions. Metab Eng 7:353–363

    Article  PubMed  CAS  Google Scholar 

  19. Abdel-Hamid A, Attwood MM, Guest JR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147:1483–1498

    PubMed  CAS  Google Scholar 

  20. Diez-Gonzalez F, Russell JB (1997) The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. Microbiology 143:1175–1180

    Article  PubMed  CAS  Google Scholar 

  21. Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180(4):767–772

    PubMed  CAS  Google Scholar 

  22. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661

    Article  PubMed  CAS  Google Scholar 

  23. Yuk H-G, Marshall DM (2004) Adaptation of Escherichia coli O157:H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl Environ Microbiol 70(6):3500–3505

    Article  PubMed  CAS  Google Scholar 

  24. Kannan G, Wilks JC, Fitzgerald DM, Jones BD, BonDurant SS, Slonczewski JL (2008) Rapid acid treatment of Escherichia coli: transcriptomic response and recovery. BMC Microbiol 8(37). http://www.biomedcentral.com/1471-2180/8/37

  25. van de Merwe WP, Czégé J, Milham ME, Bronk BV (2004) Rapid optically based measurements of diameter and length for spherical or rod-shaped bacteria in vivo. Appl Opt 43(28):5296–5302

    Google Scholar 

  26. Russell JB, Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our thanks to Peter Neubauer for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Götz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junne, S., Nicolas Cruz-Bournazou, M., Angersbach, A. et al. Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli batch cultivations. J Ind Microbiol Biotechnol 37, 935–942 (2010). https://doi.org/10.1007/s10295-010-0742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0742-5

Keywords

Navigation