Skip to main content
Log in

Analysis of wide-domain transcriptional regulation in solid-state cultures of Aspergillus oryzae

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Many filamentous fungi secrete considerable quantities of enzymes including protease, cellulase and xylanase, which are of major industrial importance. Over the past few decades, many of these fungal enzymes have been isolated and their relevant genes characterised. Solid-state fermentation (SSF), an ancient technique described as a fermentation process performed on non-soluble material whereby the material acts as a physical support and as a source of nutrients, is widely employed in the production of industrially important enzymes. Control mechanisms governing gene expression in SSF however, have been rarely studied. The influence of carbon and nitrogen sources on the production and transcriptional regulation of hydrolase enzymes secreted by an Aspergillus strain was investigated with the hope of expanding on the relatively small amount of knowledge regarding cellular control of gene expression. This study involved screening a collection of fungal strains for protease, cellulase and xylanase production under SSF conditions. From this, one fungal strain was then chosen for further analysis. Factors affecting the secretion of the hydrolase enzymes were optimised, and following this, the influence of nutritional supplementation on the production and transcriptional regulation of the enzymes was investigated. Real-time PCR techniques were used to assess the relative expression levels of genes encoding hydrolase activities and of the genes encoding regulatory elements such as AreA, PacC and CreA in an effort to identify possible transcriptional regulation mechanisms. The complexity of gene regulation under SSF conditions became apparent during the study, as other factors such as post-transcriptional regulation appeared to play a far greater role than previously imagined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tudzynski P, Tudzynski B (1997) Novel techniques and regulatory circuits. In: Anke (ed) Fungal biotechnology. Chapman and Hall, Weinheim, pp 229–249

  2. Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2006) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1–75

    Article  PubMed  CAS  Google Scholar 

  3. Jacobs M, Stahl U (1995) Gene regulation in mycelial fungi. In: Kuck (ed) The mycota II: genetics and biotechnology. Springer, Berlin, pp 115–167

  4. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  PubMed  CAS  Google Scholar 

  5. Tamayo EN, Villanueva A, Hasper AA, Graaff LH, Ramón D, Orejas M (2008) CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol 45:984–993

    Article  PubMed  CAS  Google Scholar 

  6. Jarai G (1997) Heterologous gene expression in filamentous fungi. In: Anke (ed) Fungal biotechnology. Chapman and Hall, Weinheim, pp 251–261

  7. Fillinger S, Panozzo C, Mathieu M, Felenbok B (1995) The basal level of transcription of the alc genes in the ethanol regulon in Aspergillus nidulans is controlled both by the specific transactivator AlcR and the general carbon catabolite repressor CreA. FEBS Lett 368:547–550

    Article  PubMed  CAS  Google Scholar 

  8. Petersen KL, Lehmbeck J, Christensen T (1999) A new transcriptional activator for amylase genes in Aspergillus. Mol Gen Genet 262:668–676

    Article  PubMed  CAS  Google Scholar 

  9. Mogensen J, Nielsen HB, Hofmann G, Nielsen J (2006) Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol 43:593–603

    Article  PubMed  CAS  Google Scholar 

  10. Ilmen M, Thrane C, Penttila M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460

    PubMed  CAS  Google Scholar 

  11. Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP (1996) Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol 21:1273–1281

    Article  PubMed  CAS  Google Scholar 

  12. Katz M, Bernardo S, Cheetham B (2008) The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Curr Genet 54:47–55

    Article  PubMed  CAS  Google Scholar 

  13. Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483

    Article  PubMed  CAS  Google Scholar 

  14. Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst MA, Penalva HNJ (1995) Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev 9:1622–1632

    Article  PubMed  CAS  Google Scholar 

  15. Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HNJ (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355–1364

    PubMed  CAS  Google Scholar 

  16. Peters DG, Caddick MX (1994) Direct analysis of native and chimeric GATA specific DNA binding proteins from Aspergillus nidulans. Nucleic Acids Res 22:5164–5172

    Article  PubMed  CAS  Google Scholar 

  17. Christensen T, Hynes MJ, Davis MA (1998) Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Microbiol 64:3232–3237

    PubMed  CAS  Google Scholar 

  18. Wilson RA, Arst HN (1998) Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “Streetwise” GATA family of transcription factors. Microbiol Mol Biol Rev 62:586–596

    PubMed  CAS  Google Scholar 

  19. Lockington RA, Rodbourn L, Barnett S, Carter CJ, Kelly JM (2002) Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol 37:190–196

    Article  PubMed  CAS  Google Scholar 

  20. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  PubMed  CAS  Google Scholar 

  21. Davis MA, Small AJ, Kourambas S, Hynes MJ (1996) The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J Bacteriol 178:3406–3409

    PubMed  CAS  Google Scholar 

  22. Morozov IY, Galbis-Martinez M, Jones MG, Caddick MX (2001) Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol Microbiol 42:269–277

    Article  PubMed  CAS  Google Scholar 

  23. Takasaki K, Shoun H, Nakamura A, Hoshino T, Takaya N (2004) Unusual transcription regulation of the niaD gene under anaerobic conditions supporting fungal ammonia fermentation. Biosci Biotechnol Biochem 68:978–980

    Article  PubMed  CAS  Google Scholar 

  24. Caddick MX, Jones MG, van Tonder JM, Le Cordier H, Narendja F, Strauss J, Morozov IY (2006) Opposing signals differentially regulate transcript stability in Aspergillus nidulans. Mol Microbiol 62:509–519

    Article  PubMed  CAS  Google Scholar 

  25. Marzluf GA (1981) Regulation of nitrogen metabolism and gene expression in fungi. Microbiol Rev 45:437–461

    PubMed  CAS  Google Scholar 

  26. Burger G, Strauss J, Scazzocchio C, Lang BF (1991) nirA, the pathway-specific regulatory gene of nitrate assimilation in Aspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly conserved regions. J Mol Cell Biol 11:5746–5755

    CAS  Google Scholar 

  27. Muro-Pastor MI, Gonzalez R, Strauss J, Narendja F, Scazzocchio C (1999) The GATA factor of AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J 18:1584–1597

    Article  PubMed  CAS  Google Scholar 

  28. Nozawa SR, Ferreira-Nozawa MS, Martinez-Rossi NM, Rossi A (2003) The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway. Fung Genet Biol 39:286–295

    Article  CAS  Google Scholar 

  29. Mingot JM, Espeso EA, Díez E, Peñalva MÁ (2001) Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol Cell Biol 21:1688–1699

    Article  PubMed  CAS  Google Scholar 

  30. Diez E, Alvaro J, Espeso EA, Rainbow J, Suarez T, Tilburn J, Arst HN, Penalva MA (2002) Activation of the Aspergillus PacC zinc finger transcription factor requires two preteolytic steps. EMBO J 21:1350–1359

    Article  PubMed  CAS  Google Scholar 

  31. Arst HN, Penalva MA (2003) pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224–231

    Article  PubMed  CAS  Google Scholar 

  32. Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, Rudnicka JD, Bussink HJ, Munera-Huertas T, Stanton L, Hervas-Aguilar A, Espeso EA, Tilburn J, Arst HN Jr, Penalva MA (2007) Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot Cell 6:2365–2375

    Article  PubMed  CAS  Google Scholar 

  33. van Kuyk PA, Cheetham BF, Katz ME (2000) Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Fung Genet Biol 29:201–210

    Article  CAS  Google Scholar 

  34. Hoffman B, Breuil C (2003) Analysis of the distribution and regulation of three representative subtilase genes in sapstaining fungi. Fung Genet Biol 41:274–283

    Article  CAS  Google Scholar 

  35. van den Hombergh JPTW, van de Vondervoort PJI, Fraissinet-Tachet L, Visser J (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

    Article  PubMed  Google Scholar 

  36. Iwashita K (2002) Recent studies of protein secretion by filamentous fungi. J Biosci Bioeng 94:530–535

    PubMed  CAS  Google Scholar 

  37. Hasper AA, Visser J, de Graaff LH (2000) The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression. J Mol Microbiol 36:193–200

    Article  CAS  Google Scholar 

  38. Endo Y, Yokoyama M, Morimoto M, Shirai K, Chikamatsu G, Kato N, Tsukagoshi N, Kato M, Kobayashi T (2008) Novel promoter sequence required for inductive expression of the Aspergillus nidulans endoglucanase gene eglA. Biosci Biotechnol Biochem 72:312–320

    Article  PubMed  CAS  Google Scholar 

  39. Stricker A, Mach R, de Graaff L (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78:211–220

    Article  PubMed  CAS  Google Scholar 

  40. Pérez-González J, van Peij N, Bezoen A, de Graaff LH (1998) Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a β-xylosidase. Appl Environ Microbiol 64:1412–1419

    PubMed  Google Scholar 

  41. Marui J, Tanaka A, Mimura S, de Graaff LH, Visser J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N (2002) A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet Biol 35:157–169

    Article  PubMed  CAS  Google Scholar 

  42. Han S, Navarro J, Greve RA, Adams TH (1993) Translational repression of brlA expression prevents premature development in Aspergillus. EMBO J 12:2449–2457

    PubMed  CAS  Google Scholar 

  43. Radzio R, Kück U (1997) Synthesis of biotechnologically relevant heterologous proteins in filamentous fungi. Proc Biochem 32:529–539

    Article  CAS  Google Scholar 

  44. te Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt P, van den Hondel C (2005) Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Microbiol Biotechnol 69:44–50

    Article  PubMed  CAS  Google Scholar 

  45. Ellaiah P, Adinarayana K, Bhavani Y, Padmaja P, Srinivasulu B (2002) Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Proc Chem 38:615–620

    CAS  Google Scholar 

  46. Tunga R, Shrivastava B, Banerjee R (2003) Purification and characterization of a protease from solid state culture of Aspergillus parasiticus. Proc Biochem 38:1553–1558

    Article  CAS  Google Scholar 

  47. Tremacoldi CR, Watanabe NK, Carmona EC (2004) Production of extracellular acid protease by Aspergillus clavatus. W J Microbiol Biotechnol 20:639–642

    Article  CAS  Google Scholar 

  48. Botella C, de Ory I, Webb C, Cantero D, Blandino A (2005) Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26:100–106

    Article  CAS  Google Scholar 

  49. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction products by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus. Proc Natl Acad Sci USA 88:7276–7280

    Article  PubMed  CAS  Google Scholar 

  50. Chaffin DO, Rubens CE (1998) Blue/white screening of recombinant plasmids in Gram-positive bacteria by interruption of alkaline phosphatase gene (phoZ) expression. Gene 219:91–99

    Article  PubMed  CAS  Google Scholar 

  51. Liu W, Saint DA (2002) Validation of a quantitative method for real time PCR kinetics. Biochem Biophys Res Commun 294:347–353

    Article  PubMed  CAS  Google Scholar 

  52. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  53. Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM, Moorman AFM (2002) Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green 1 depends on cDNA synthesis conditions. Anal Biochem 307:63–69

    Article  PubMed  CAS  Google Scholar 

  54. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspect Med 27:95–125

    Article  CAS  Google Scholar 

  55. Thellin O, Zorzi W, Lakaye B, de Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  PubMed  CAS  Google Scholar 

  56. Sweeney MJ, Pamies P, Dobson ADW (2000) The use of reverse transcription-polymerase chain reaction (RT-PCR) for monitoring aflatoxin production in Aspergillus parasiticus 439. Int J Food Microbiol 56:97–103

    Article  PubMed  CAS  Google Scholar 

  57. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  PubMed  CAS  Google Scholar 

  58. Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512

    Article  PubMed  CAS  Google Scholar 

  59. Campbell NA, Reece JB, Mitchell LG (1999) From gene to protein. In: Biology, 5th edn. Benjamin-Cummings, CA, pp 294–318

  60. Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trend Biotechnol 23:468–474

    Article  CAS  Google Scholar 

  61. Bhadauria V, Zhao WS, Wang LX, Zhang Y, Liu JH, Yang J, Kong LA, Peng YL (2007) Advances in fungal proteomics. Microbiol Res 162:193–200

    Article  PubMed  CAS  Google Scholar 

  62. Brunner K, Lichtenauer A, Kratochwill K, Delic M, Mach R (2007) Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Curr Genet 52:213–220

    Article  PubMed  CAS  Google Scholar 

  63. Espeso EA, Roncal T, Díez E, Rainbow L, Bignell E, Álvaro J, Suárez T, Denison SH, Tilburn J, Arst HNJ, Peñalva MA (2000) On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J 19:719–728

    Article  PubMed  CAS  Google Scholar 

  64. Chikamatsu G, Shirai K, Kato M, Kobayashi T, Tsukagoshi N (1999) Structure and expression properties of the endo-β-1, 4-glucanase A gene from the filamentous fungus Aspergillus nidulans. FEMS Microbiol Lett 175:239–245

    PubMed  CAS  Google Scholar 

  65. Chang PK, Ehrlich KC, Linz JE, Bhatnager D, Cleveland TE, Bennett JW (1996) Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr Genet 30:68–75

    Article  PubMed  CAS  Google Scholar 

  66. Olszewska A, Król K, Weglenski P, Dzikowska A (2007) Arginine catabolism in Aspergillus nidulans is regulated by the rrmA gene coding for the RNA-binding protein. Fungal Genet Biol 44:1285–1297

    Article  PubMed  CAS  Google Scholar 

  67. Oda K, Kakizono D, Yamada O, Lefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457

    Article  PubMed  CAS  Google Scholar 

  68. te Biesebeke R, van Biezen N, de Vos WM, van den Hondel CAMJJ, Punt PJ (2005) Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Appl Microbiol Biotechnol 67:75–82

    Article  PubMed  CAS  Google Scholar 

  69. MacCabe AP, Orejas M, Tamayo EN, Villanueva A, Ramón D (2002) Improving extracellular production of food-use enzymes from Aspergillus nidulans. J Biotechnol 98:43–54

    Article  Google Scholar 

  70. Cohen R, Yarden O, Hadar Y (2002) Lignocellulose affects Mn2+ regulation of peroxidase transcriptional levels in solid state cultures of Pleurotus ostreatus. Appl Environ Microbiol 68:3156–3158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Alltech Inc. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shauna M. McKelvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKelvey, S.M., Murphy, R.A. Analysis of wide-domain transcriptional regulation in solid-state cultures of Aspergillus oryzae . J Ind Microbiol Biotechnol 37, 455–469 (2010). https://doi.org/10.1007/s10295-010-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0691-z

Keywords

Navigation