Skip to main content
Log in

Variations of bacterial 16S rDNA phylotypes prior to and after chlorination for drinking water production from two surface water treatment plants

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

We examined the variations of bacterial populations in treated drinking water prior to and after the final chlorine disinfection step at two different surface water treatment plants. For this purpose, the bacterial communities present in treated water were sampled after granular activated carbon (GAC) filtration and chlorine disinfection from two drinking water treatment plants supplying the city of Paris (France). Samples were analyzed after genomic DNA extraction, polymerase chain reaction (PCR) amplification, cloning, and sequencing of a number of 16S ribosomal RNA (rRNA) genes. The 16S rDNA sequences were clustered into operational taxonomic units (OTUs) and the OTU abundance patterns were obtained for each sample. The observed differences suggest that the chlorine disinfection step markedly affects the bacterial community structure and composition present in GAC water. Members of the Alphaproteobacteria and Betaproteobacteria were found to be predominant in the GAC water samples after phylogenetic analyses of the OTUs. Following the chlorine disinfection step, numerous changes were observed, including decreased representation of Proteobacteria phylotypes. Our results indicate that the use of molecular methods to investigate changes in the abundance of certain bacterial groups following chlorine-based disinfection will aid in further understanding the bacterial ecology of drinking water treatment plants (DWTPs), particularly the disinfection step, as it constitutes the final barrier before drinking water distribution to the consumer’s tap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  3. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736. doi:10.1128/AEM.71.12.7724-7736.2005

    Article  CAS  PubMed  Google Scholar 

  4. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–D30. doi:10.1093/nar/gkn723

    Article  CAS  PubMed  Google Scholar 

  5. Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17:297–302. doi:10.1016/j.copbio.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  6. Brettar I, Höfle MG (2008) Molecular assessment of bacterial pathogens— a contribution to drinking water safety. Curr Opin Biotechnol 19:274–280. doi:10.1016/j.copbio.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  7. Camper AK, LeChevallier MK, Broadaway SC, McFeters GA (1985) Growth and persistence of pathogens on granular activated carbon filters. Appl Environ Microbiol 50:1378–1382

    CAS  PubMed  Google Scholar 

  8. Camper AK, LeChevallier MK, Broadaway SC, McFeters GA (1986) Bacteria associated with granular activated carbon particles in drinking water. Appl Environ Microbiol 52:434–438

    CAS  PubMed  Google Scholar 

  9. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris J, Kulam-Syed-Mohideen AS, McGarrell M, Marsh T, Garrity M, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi:10.1093/nar/gkn879

    Article  CAS  PubMed  Google Scholar 

  10. DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen L, Picno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399. doi:10.1093/nar/gkl244

    Article  CAS  PubMed  Google Scholar 

  11. Eichler S, Christen R, Holtje C, Westphal P, Bötel J, Brettar I, Mehling A, Höfle MG (2006) Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl Environ Microbiol 72:1858–1872. doi:10.1128/AEM.72.3.1858-1872.2006

    Article  CAS  PubMed  Google Scholar 

  12. Falkinham JO, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare and other Mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67:1225–1231. doi:10.1128/AEM.67.3.1225-1231.2001

    Article  CAS  PubMed  Google Scholar 

  13. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  14. Gerba CP, Nwachuku N, Riley KR (2003) Disinfection resistance of waterborne pathogens on the United States Environmental Protection Agency’s contaminant candidate list (CCL). J Water SRT Aqua 52:81–94

    CAS  Google Scholar 

  15. Gomila M, Ramirez A, Gascò J, Lalucat J (2008) Mycobacterium llatzerense sp. nov., a facultatively autotrophic, hydrogen-oxidizing bacterium isolated from haemodialysis water. Int J Syst Evol Microbiol 58:2769–2773. doi:10.1099/ijs.0.65857-0

    Article  CAS  PubMed  Google Scholar 

  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  17. Heinemann JA, Rosen H, Savill M, Burgos-Caraballo S, Toranzos GA (2006) Environment arrays: a possible approach for predicting changes in waterborne bacterial disease potential. Environ Sci Technol 40:7150–7156. doi:10.1021/es060331x

    Article  CAS  PubMed  Google Scholar 

  18. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319. doi:10.1093/bioinformatics/bth226

    Article  CAS  PubMed  Google Scholar 

  19. Humrighouse BW, Santo Domingo JW, Revetta RP, Lamendella R, Kelty CA, Oerther DB (2006) Microbial characterization of drinking water systems receiving groundwater and surface water as the primary sources of water. In: Buchberger SG, Clark RM, Grayman, WM, Uber JG (eds) Water distribution systems analysis symposium 2006. Proceedings of the 8th annual water distribution systems analysis symposium. American Society of Civil Engineering Publication, Reston, Virginia, USA, pp 1–14. doi:10.1061/40941(247)159

  20. Huang J, Wang L, Ren N, Ma F, Ma J (1997) Disinfection effect of chlorine dioxide on bacteria in water. Water Res 31:607–613

    Article  CAS  Google Scholar 

  21. Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 5. Springer Science, New York, pp 3–37. doi:10.1007/0-387-30745-1_1

    Google Scholar 

  22. Kistemann T, Claßen T, Koch C, Dangendorf F, Fischeder R, Gebel J, Vacata V, Exner M (2002) Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Appl Environ Microbiol 68:2188–2197. doi:10.1128/AEM.68.5.2188-2197.2002

    Article  CAS  PubMed  Google Scholar 

  23. Kormas KA, Neofitou C, Pachiadaki M, Koufostahi E (2009) Changes of the bacterial assemblages throughout an urban drinking water distribution system. Environ Monit Assess. Published online ahead of print on 30 April 2009. doi:10.1007/s10661-009-0924-7

  24. Le Dantec C, Duguet JP, Monteil A, Dumoutier N, Dubrou S, Vincent V (2002) Chlorine disinfection of atypical Mycobacteria isolated from a water distribution system. Appl Environ Microbiol 68:1025–1032. doi:10.1128/AEM.68.3.1025-1032.2002

    Article  CAS  PubMed  Google Scholar 

  25. Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V (2002) Occurrence of Mycobacteria in water treatment lines and in water distribution systems. Appl Environ Microbiol 68:5318–5325. doi:10.1128/AEM.68.11.5318-5325.2002

    Article  CAS  PubMed  Google Scholar 

  26. LeChevallier MW, Hassenauer TS, Camper AK, McFeters GA (1984) Disinfection of bacteria attached to granular activated carbon. Appl Environ Microbiol 48:918–923

    CAS  PubMed  Google Scholar 

  27. LeChevallier MW, Welch NJ, Smith DB (1996) Full-scale studies of factors related to coliform regrowth in drinking water. Appl Environ Microbiol 62:2201–2211

    CAS  PubMed  Google Scholar 

  28. Lehtola MJ, Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T (2004) Removal of soft deposits from the distribution system improves the drinking water quality. Wat Res 38:601–610. doi:10.1016/j.watres.2003.10.054

    Article  CAS  PubMed  Google Scholar 

  29. Leilei W, Wei C, Tao L (2008) Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment. Water Sci Eng 1:102–111. doi:10.3882/j.issn.1674-2370.2008.02.010

    Google Scholar 

  30. Magic-Knezev A, van der Kooij D (2004) Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment. Water Res 38:3971–3979. doi:10.1016/j.watres.2004.06.017

    Article  CAS  PubMed  Google Scholar 

  31. Magic-Knezev A, Wullings B, Van der Kooij D (2009) Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment. J Appl Microbiol 107:1457–1467. doi:10.1111/j.1365-2672.2009.04337.x

    Google Scholar 

  32. Massa S, Armuzzi R, Tosques M, Canganella F, Trovatelli LD (1999) Note: susceptibility to chlorine of Aeromonas hydrophila strains. J Appl Microbiol 86:169–173

    Article  CAS  Google Scholar 

  33. Mir J, Morato J, Ribas F (1997) Resistance to chlorine of freshwater bacterial strains. J Appl Microbiol 82:7–18

    Article  CAS  PubMed  Google Scholar 

  34. Norton CD, LeChevallier MW (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  35. Poitelon J-B, Joyeux M, Welte B, Duguet JP, Prestel E, Lespinet O, DuBow MS (2009) Assessment of phylogenetic diversity of bacterial microflora in drinking water using serial analysis of ribosomal sequence tags. Water Res 43:4197–4206. doi:10.1016/j.watres.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  36. Russel AD (1998) Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 43:S57–S68

    Article  Google Scholar 

  37. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506. doi:10.1128/AEM.71.3.1501-1506.2005

    Article  CAS  PubMed  Google Scholar 

  38. Schoenen D (2002) Role of disinfection in suppressing the spread of pathogens with drinking water: possibilities and limitations. Water Res 36:3874–3888. doi:10.1016/S0043-1354(02)00076-3

    Article  CAS  PubMed  Google Scholar 

  39. Srinivasan S, Harrington GW, Xagoraraki I, Goel R (2008) Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water Res 42:3393–3404. doi:10.1016/j.watres.2008.04.025

    Article  CAS  PubMed  Google Scholar 

  40. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  41. Stewart MH, Wolfe RL, Means EG (1990) Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water. Appl Environ Microbiol 56:3822–3829

    CAS  PubMed  Google Scholar 

  42. Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127. doi:10.1146/annurev.micro.54.1.81

    Article  CAS  PubMed  Google Scholar 

  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Google Scholar 

  44. Valentin K, John U, Medlin L (2005) Nucleic acid isolation from environmental aqueous samples. Methods Enzymol 395:15–37. doi:10.1016/S0076-6879(05)95002-7

    Article  CAS  PubMed  Google Scholar 

  45. Velten S, Hammes F, Boller M, Egli T (2007) Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination. Water Res 41:1973–1983. doi:10.1016/j.watres.2007.01.021

    Article  CAS  PubMed  Google Scholar 

  46. Whipps CM, Butler WR, Pourahmad F, Watral VG, Kent ML (2007) Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., a species closely related to Mycobacterium chelonae. Int J Syst Evol Microbiol 57:2525–2531. doi:10.1099/ijs.0.64841-0

    Article  CAS  PubMed  Google Scholar 

  47. WHO, OECD (2003) Assessing microbial safety of drinking water: improving approaches and methods. In: Dufour A, Snozzi M, Koster W, Bartram J, Ronchi E (eds). IWA Publishing, London

  48. Wilcox DP, Chang E, Dickson KL, Johansson KR (1983) Microbial growth associated with granular activated carbon in a pilot water treatment facility. Appl Environ Microbiol 46:406–416

    CAS  PubMed  Google Scholar 

  49. Williams MM, Domingo JW, Meckes MC, Kelty CA, Rochon HS (2004) Phylogenetic diversity of drinking water bacteria in a distribution system simulator. J Appl Microbiol 96:954–964. doi:10.1111/j.1365-2672.2004.02229.x

    Article  CAS  PubMed  Google Scholar 

  50. Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100. doi:10.1016/0014-5793(93)81499-P

    Article  CAS  PubMed  Google Scholar 

  51. Wolfe RL, Ward NR, Olson BH (1985) Inactivation of heterotrophic bacterial populations in finished drinking water by chlorine and chloramines. Wat Res 19:1393–1403

    Article  CAS  Google Scholar 

  52. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Armel Guyonvarch, Erick Denamur, and Eric Delahaye for their comments and suggestions, and also the staff of EAU DE PARIS for their technical assistance. This work was supported by the Association Nationale de la Recherche et de la Technologie de France (ANRT), the municipal water company EAU DE PARIS, the AQUAPHAGE program of the Agence Nationale de la Recherche (ANR, France), and the Centre National de la Recherche Scientifique (CNRS, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. DuBow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poitelon, JB., Joyeux, M., Welté, B. et al. Variations of bacterial 16S rDNA phylotypes prior to and after chlorination for drinking water production from two surface water treatment plants. J Ind Microbiol Biotechnol 37, 117–128 (2010). https://doi.org/10.1007/s10295-009-0653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0653-5

Keywords

Navigation