Skip to main content
Log in

Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Two bacterial cultures were isolated and tested for degradation of shrimp shell waste. According to morphological examination, physiological tests, and applied molecular techniques, isolates were identified as Bacillus cereus and Exiguobacterium acetylicum. Both strains were cultivated separately in flasks with 100 mL of shrimp shell waste broth (3% of washed, dried and ground shrimp shell waste in tap water, pH 7.0) at 37°C. At determined periods of time, deproteinization and demineralization of residuals were measured. Fermentation of 3% shell waste with B. cereus indicated 97.1% deproteinization and 95% demineralization. For E. acetylicum, the level of deproteinization and demineralization was 92.8 and 92%, respectively. Protein content was reduced from 18.7 to 5.3% with B. cereus and to 7.3% with E. acetylicum. No additional supplements were used during the fermentation of shell waste. B. cereus strain showed higher efficacy in decomposition of shell waste and was used for large-scale fermentation in 12 L of 10% shrimp shell waste broth. Incubation of bacteria with shell waste during 14 days at 37°C resulted in 78.6% deproteinization and 73% demineralization. High activity of isolated cultures in decomposition of shrimp shell waste suggests broad potential for application of these bacteria in environmentally friendly approaches to chitin extraction from chitin-rich wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Chang W-T, Chen Y-C, Jao C-L (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour Technol 98:1224–1230. doi:10.1016/j.biortech.2006.05.005

    Article  PubMed  CAS  Google Scholar 

  2. Chen HC, Phang KA, Wu SD, Mau WJ (2001) Isolation of chitin from shrimp shells deproteinized by Candida parapsilosis CCRC 20515. Food Sci Agric Chem 3:114–120

    CAS  Google Scholar 

  3. Hall GM, Silva S (1992) Lactic acid fermentation of shrimp (Penaus monodon) waste for chitin recovery. In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in chitin and chitosan. Elsevier Applied Science, London, pp 633–668

    Google Scholar 

  4. Healy MG, Romo CR, Bustos R (1994) Bioconversion of marine crustacean shell waste. Resour Conserv Recycling 11:139–147. doi:10.1016/0921-3449(94)90085-X

    Article  Google Scholar 

  5. Kasana RC, Yadav SK (2007) Isolation of a psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and characterization of its alkaline protease. Curr Microbiol 54:224–229. doi:10.1007/s00284-006-0402-1

    Article  PubMed  CAS  Google Scholar 

  6. Lopez-Cortes A, Schumann P, Pukall R, Stackebrandt E (2006) Exiguobacterium mexicanum sp. nov. and Exiguobacterium artemiae sp. nov. isolated from the brine shrimp Artemia franciscana. Syst Appl Microbiol 29:183–190. doi:10.1016/j.syapm.2005.09.007

    Article  PubMed  CAS  Google Scholar 

  7. Luo Y, Vilain S, Voigt B, Albrecht D, Hecker M, Brozel VS (2007) Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiol Lett 271:40–47. doi:10.1111/j.1574-6968.2007.00692.x

    Article  PubMed  CAS  Google Scholar 

  8. Mejia-Saules JE, Waliszewski KN, Garcia MA, Cruz-Camarillo R (2006) The use of crude shrimp shell powder for chitinase production by Serratia marcescens WF. Food Technol Biotechnol 44:95–100

    CAS  Google Scholar 

  9. Prakash M, Banik RM, Koch-Brandt C (2005) Purification and characterization of Bacillus cereus protease suitable for detergent industry. Appl Biochem Biotechnol 127:143–155. doi:10.1385/ABAB:127:3:143

    Article  PubMed  CAS  Google Scholar 

  10. Rao MS, Munoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54:808–813. doi:10.1007/s002530000449

    Article  PubMed  CAS  Google Scholar 

  11. Rao MS, Stevens WF (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol Biotechnol 44:83–87

    CAS  Google Scholar 

  12. Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res 49:93–135. doi:10.1016/S1043-4526(05)49003-8

    Article  PubMed  CAS  Google Scholar 

  13. Shimahara K, Yasuyuki T, Kazuhiro O, Kazunori K, Osamu O (1984) Chemical composition and some properties of crustacean chitin prepared by use of proteolytic activity of Pseudomonas maltophilia LC102. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, Orlando, pp 239–255

    Google Scholar 

  14. Shirai K, Guerrero I, Huerta S, Saucedo G, Castillo A, Gonzalez RO, Hall GM (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microb Technol 28:446–452. doi:10.1016/S0141-0229(00)00338-0

    Article  PubMed  CAS  Google Scholar 

  15. Shoemaker CA, Arias CR, Klesius PH, Welker TL (2005) Technique for identifying Flavobacterium columnare using whole-cell fatty acid profiles. J Aquat Anim Health 17:267–274. doi:10.1577/H04-034.1

    Article  Google Scholar 

  16. Suresh PV, Chandrasekaran M (1998) Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World J Microbiol Biotechnol 14:655–660. doi:10.1023/A:1008844516915

    Article  CAS  Google Scholar 

  17. Vainrub A, Pustovyy O, Vodyanoy V (2006) Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser. Opt Lett 31:2855–2857. doi:10.1364/OL.31.002855

    Article  PubMed  Google Scholar 

  18. Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240. doi:10.1016/j.cryobiol.2007.01.008

    Article  PubMed  CAS  Google Scholar 

  19. Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885. doi:10.1128/AEM.00938-06

    Article  PubMed  CAS  Google Scholar 

  20. Wang SL, Chio SH (1998) Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microb Technol 22:629–633. doi:10.1016/S0141-0229(97)00264-0

    Article  CAS  Google Scholar 

  21. Yang J-K, Shih I-L, Tzeng Y-M, Wang S-L (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb Technol 26:406–413. doi:10.1016/S0141-0229(99)00164-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. E. Olsen for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Vodyanoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokulova, I., Krumnow, A., Globa, L. et al. Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum . J Ind Microbiol Biotechnol 36, 1123–1126 (2009). https://doi.org/10.1007/s10295-009-0587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0587-y

Keywords

Navigation