Skip to main content
Log in

Optimization of lignin peroxidase production and stability by Phanerochaete chrysosporium using sewage-treatment-plant sludge as substrate in a stirred-tank bioreactor

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A laboratory-scale study was carried out to produce lignin peroxidase (ligninase) by white rot fungus (Phanerochaete chrysosporium) using sewage-treatment-plant (STP) sludge as the major substrate. The optimization was done using full-factorial design (FFD) with agitation and aeration as the two parameters. Nine experiments indicated by the FFD were fermented in a stirred-tank bioreactor for 3 days. A second-order quadratic model was developed using the regression analysis of the experimental results with the linear, quadratic, and interaction effects of the parameters. Analysis of variance (ANOVA) showed a high coefficient of determination (R 2) value of 0.972, thus indicating a satisfactory fit of the quadratic model with the experimental data. Using statistical analysis, the optimum aeration and agitation rates were determined to be 2.0 vvm and 200 rpm, respectively, with a maximum activity of 225 U l−1 in the first 3 days of fermentation. The validation experiment showed the maximum activity of lignin peroxidase was 744 U l−1 after 5 days of fermentation. The results for the tests of the stability of lignin peroxidase showed that the activity was more than 80% of the maximum for the first 12 h of incubation at an optimum pH of 5 and temperature of 55°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DOE-Environmental Quality Reports (2006) Department of Environment, Ministry of Science, Technology and Environmental, Kuala Lumpur, Malaysia

  2. Kadir MDA, Velayutham S (1999) The management of municipal wastewater sludge in Malaysia. In: Symposium on sludge management, University Technology Malaysia

  3. Zain SM, Basri H, Suja S, Jaafar O (2001) Land application technique for the treatment and disposal of sewage sludge. In: Proceedings of International Water Association (IWA), Conference on water and wastewater management for developing countries, Kuala Lumpur

  4. Alam MZ, Fakhru’l-Razi A, Molla AH (2003) Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using a batch fermenter. Water Res 37:3569–3578. doi:10.1016/S0043-1354(03)00260-4

    Article  PubMed  CAS  Google Scholar 

  5. Molla AH (2002) Solid state bioconversion of domestic wastewater treatment plant sludge into compost by screened filamentous fungi. Ph.D. Thesis, University Putra Malaysia, Selangor, Malaysia

  6. Singh RP, Agrawal M (2007) Potential benefits and risks of land application of sewage sludge. Waste Manag 28:347–358. doi:10.1016/j.wasman.2006.12.010

    Article  PubMed  Google Scholar 

  7. Mantovi P, Baldoni G, Toderi G (2005) Reuse of liquid, dewatered and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res 39:289–296. doi:10.1016/j.watres.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  8. Bright DA, Healey N (2003) Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver. Br Columbia Environ Pollut 126:39–49

    CAS  Google Scholar 

  9. Inoije S, Sawayama S, Ogi T, Yokoyama S (1996) Organic composition of liquidized sewage sludge. Biomass Bioenergy 10:37–40. doi:10.1016/0961-9534(95)00056-9

    Article  Google Scholar 

  10. Lachhab K, Tyagi RD, Valero JR (2001) Production of Bacillus thuringiensis biopesticides using wastewater sludge as raw material: effect of inoculum and sludge solids concentration. Process Biochem 37:197–208. doi:10.1016/S0032-9592(01)00198-4

    Article  CAS  Google Scholar 

  11. Lourdes MD, Montile T, Tyagi RD, Valero JR (2001) Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides. Water Res 35:3807–3816. doi:10.1016/S0043-1354(01)00103-8

    Article  Google Scholar 

  12. Houghton JI, Quarmby J (1999) Biopolymers in wastewater treatment. Curr Opin Biotechnol 10:259–262. doi:10.1016/S0958-1669(99)80045-7

    Article  PubMed  CAS  Google Scholar 

  13. Jalal KCA, Alam MZ, Muyibi SA, Jamal P (2006) Isolation and purification of bacterial strains from treatment plants for effective bioconversion of domestic wastewater sludge. Am J Environ Sci 2:286–290

    Google Scholar 

  14. Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986) Production of multiple ligninase by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 8:27–32. doi:10.1016/0141-0229(86)90006-2

    Article  CAS  Google Scholar 

  15. Janshekar H, Fiechter A (1988) Cultivation of Phanerochaete chrysosporium and production of lignin peroxidases in submerged stirred tank reactors. J Biotechnol 8:97–112. doi:10.1016/0168-1656(88)90072-7

    Article  CAS  Google Scholar 

  16. Feijoo G, Dosoretz C, Lema JM (1995) Production of lignin peroxidase by Phanerochaete chrysosporium in a packed bed bioreactor operated in semi-continuous mode. J Biotechnol 42:247–253. doi:10.1016/0168-1656(95)00085-5

    Article  CAS  Google Scholar 

  17. Sugiura M, Hirai H, Nishida T (2003) Purification and characterization of a novel lignin peroxidase from white rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 224:285–290. doi:10.1016/S0378-1097(03)00447-6

    Article  PubMed  CAS  Google Scholar 

  18. Kapich AN, Prior BN, Botha A, Galkin S, Lundell T, Hatakka A (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb Technol 34:187–195. doi:10.1016/j.enzmictec.2003.10.004

    Article  CAS  Google Scholar 

  19. Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int Biodeterior Biodegrad 50:115–120. doi:10.1016/S0964-8305(02)00064-1

    Article  CAS  Google Scholar 

  20. Haddadin MS, Al-Natour R, Al-Qsous S, Robinson RK (2002) Bio-degradation of lignin in olive pomace by freshly-isolated species of Basidiomycete. Bioresour Technol 82:131–137. doi:10.1016/S0960-8524(01)00171-7

    Article  PubMed  CAS  Google Scholar 

  21. Roldán-Carillo T, Rodríguez-Vázquez R, Díaz-Cervantes D, Vázquez-Torres H, Manzur-Guzmán A, Torres-Domínguez A (2003) Starch-based plastic polymer degradation by the white rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse pith: enzyme production. Bioresour Technol 86:1–5. doi:10.1016/S0960-8524(02)00142-6

    Article  Google Scholar 

  22. Lorenzo M, Moldes D, Couto SR, Sanroman A (2002) Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresour Technol 82:109–113. doi:10.1016/S0960-8524(01)00176-6

    Article  PubMed  CAS  Google Scholar 

  23. Silva CMMS, Melo IS, Oliveira PR (2005) Ligninolytic enzyme production by Ganoderma spp. Enzyme Microb Technol 37:324–329. doi:10.1016/j.enzmictec.2004.12.007

    Article  CAS  Google Scholar 

  24. Rothschild N, Novotny C, Sasek V, Dosoretz CG (2002) Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferea): isolation and characterization of lignin peroxidase. Enzyme Microb Technol 31:627–633. doi:10.1016/S0141-0229(02)00171-0

    Article  CAS  Google Scholar 

  25. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284. doi:10.1073/pnas.81.8.2280

    Article  PubMed  CAS  Google Scholar 

  26. Buswell JA, Mollet B, Odier E (1984) Ligninolytic enzyme production by Phanerochaete chrysosporium under conditions of nitrogen sufficiency. FEMS Microbiol Lett 25:295–299. doi:10.1111/j.1574-6968.1984.tb01475.x

    Article  CAS  Google Scholar 

  27. Bosco F, Capolongo A, Ruggeri B (2002) Effect of temperature, pH ionic strength, and sodium nitrate on activity of LiPs: implications for bioremediation. Bioremediat J 6:65–76. doi:10.1080/10889860290777486

    Article  CAS  Google Scholar 

  28. Arora DS, Gill PK (2001) Comparison of two assay procedures for lignin peroxidase. Enzyme Microb Technol 28:602–605. doi:10.1016/S0141-0229(01)00302-7

    Article  PubMed  CAS  Google Scholar 

  29. Cruze-Cordova T, Roldán-Carillo TG, Díaz-Cervantes D, Ortega-López J, Saucedo-Castaňeda G, Tomasini-Campocasio A, Rodríguez-Vázquez R (1999) CO2 evolution and ligninolytic and proteolytic activities of Phanerocheate chrysosporium grown in solid state fermentation. Resour Conserv Recycl 27:3–7. doi:10.1016/S0921-3449(98)00080-9

    Article  Google Scholar 

  30. Venkatadri R, Irvine RL (1993) Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in novel biofilm reactor systems: hollow fiber reactor and silicone membrane reactor. Water Res 27:591–596. doi:10.1016/0043-1354(93)90168-H

    Article  CAS  Google Scholar 

  31. Linko S (1988) Production and characterization of extracellular lignin peroxidase from immobilized Phanerochaete chrysosporium in a 10L bioreactor. Enzyme Microb Technol 10:410–417. doi:10.1016/0141-0229(88)90035-X

    Article  CAS  Google Scholar 

  32. Linko S (1988) Continuous production of lignin peroxidase by immobilized Phanerochaete chrysosporium in a pilot scale bioreactor. J Biotechnol 8:163–170. doi:10.1016/0168-1656(88)90078-8

    Article  CAS  Google Scholar 

  33. Alam MZ, Muyibi SA Jamal P, Rahman NA (2005) Optimization of physicochemical factors for ligninase enzyme production utilizing domestic wastewater sludge. In: Second international conference on chemical and bioprocess engineering, Sabah, Malaysia

  34. Mansor MF (2008) Process optimization on production of lignin peroxidase of sewage treatment plant sludge in a stirred tank bioreactor and its biodegradation of synthetic industrial dyes. Master Thesis, International Islamic University Malaysia, Kuala Lumpur

  35. HACH (2002) Analysis handbook. HACH Company, USA

  36. Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  37. Beg QK, Sahai V, Gupta R (2003) Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem 39:203–209. doi:10.1016/S0032-9592(03)00064-5

    Article  CAS  Google Scholar 

  38. Karthikeyan RS, Rakshit SK, Baradarajan A (1996) Optimization of batch fermentation conditions for dextran production. Bioprocess Eng 15:247–251. doi:10.1007/BF02391585

    Article  CAS  Google Scholar 

  39. Tanyildizi MS, Özer D, Elibol M (2005) Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochem 40:2291–2296. doi:10.1016/j.procbio.2004.06.018

    Article  CAS  Google Scholar 

  40. Muralidhar RV, Chirumamila RR, Marchant R, Nigam PA (2001) Response surface approach for comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J 9:17–23. doi:10.1016/S1369-703X(01)00117-6

    Article  CAS  Google Scholar 

  41. Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a non-phenolic substrate by laccase from Streptomyces cyaneus CECT3335. Appl Environ Microbiol 69:1953–1958. doi:10.1128/AEM.69.4.1953-1958.2003

    Article  PubMed  CAS  Google Scholar 

  42. Niladevi KN, Sukumaran RK, Jacob N, Anisha GS, Prema P (2009) Optimization of laccase production from a novel strain—Streptomyces psammoticus using response surface methodology. Microbiol Res 164:105–113. doi:10.1016/j.micres.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  43. Willershausen H, Jager A, Graf H (1987) Ligninase production of Phanerochaete chrysosporium by immobilization of bioreactors. J Biotechnol 6:239–243. doi:10.1016/0168-1656(87)90005-8

    Article  CAS  Google Scholar 

  44. Razak CNA, Salleh AB, Musani R, Samad MY, Basri M (1997) Some characteristics of lipases from thermophilic fungi isolated from palm oil mill effluent. J Mol Cat B Enzy 3:153–159

    Article  CAS  Google Scholar 

  45. Couto SR, Moldes D, Sanromán A (2006) Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of poly R-478 by MnP. World J Microbiol Biotechnol 22:607–612. doi:10.1007/s11274-005-9078-0

    Article  CAS  Google Scholar 

  46. Bosco F, Ruggeri B, Sassi G (1996) Experimental identification of a scalable reactor configuration for lignin peroxidase production by Phanerochaete chrysosporium. J Biotechnol 52:21–29. doi:10.1016/S0168-1656(96)01620-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the ISESCO-COMSTECH for their support in approving an International Research Grant and to the Department of Biotechnology Engineering, IIUM, for providing lab facilities to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Zahangir Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M.Z., Mansor, M.F. & Jalal, K.C.A. Optimization of lignin peroxidase production and stability by Phanerochaete chrysosporium using sewage-treatment-plant sludge as substrate in a stirred-tank bioreactor. J Ind Microbiol Biotechnol 36, 757–764 (2009). https://doi.org/10.1007/s10295-009-0548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0548-5

Keywords

Navigation