Skip to main content
Log in

Influence of the carbon source on the growth and lignocellulolytic enzyme production by Morchella esculenta strains

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Growth and lignocellulolytic enzymes production by two Morchella esculenta strains (BAFC 1728 and BEL 124) growing in solid state fermentation using different lignocellulosic materials along 58 days was characterized. Both strains were able to grow on the three substrates: wheat bran, wheat bran plus corn starch, and rolled oat. The growth was characterized by measuring chitin content, reducing sugars, pH, dry weight loss, and extractable proteins, such parameters varied substantially with substrate and strain used. The maximum rate of growth in both strains was observed between 5 and 28 days. Regarding enzyme production, as a general trend strain BAFC 1728 produced the highest titres. The most evident difference was observed in laccase production by this strain on wheat bran, which exceeded that observed in strain BEL 124 by tenfold (7.45 U g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amir R, Levanon D, Yitzhak H, Chet I (1995) Factors affecting translocation and sclerotial fomation in Morchella esculenta. Exp Mycol 19:61–70. doi:10.1006/emyc.1995.1007

    Article  CAS  Google Scholar 

  2. Bach Knudsen KE (2001) The nutritional significance “dietary fibre” analysis. Anim Feed Sci Technol 90:3–20. doi:10.1016/S0377-8401(01)00193-6

    Article  CAS  Google Scholar 

  3. Botella C, Díaz A, de Ory I, Webb C, Blandino A (2007) Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem 42:98–101. doi:10.1016/j.procbio.2006.06.025

    Article  CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  5. Cavazzoni V, Manzoni M (1994) Extracellular cellulolytic complex from Morchella conica: production and purification. Lebenson Wiss Technol 27:73–77

    Article  CAS  Google Scholar 

  6. Couto SR, Rosales C, Gundín M, Sanroman A (2005) Exploitation of a waste from the brewing industry for laccase production by two Trametes species. J Food Eng 64:423–428. doi:10.1016/j.jfoodeng.2003.11.009

    Article  Google Scholar 

  7. Dekker RF, Barbosa AM (2001) The effects of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp. Enzyme Microb Technol 28:81–88. doi:10.1016/S0141-0229(00)00274-X

    Article  PubMed  CAS  Google Scholar 

  8. Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    PubMed  CAS  Google Scholar 

  9. Gelmi C, Pérez-Correa R, Agosin E (2002) Modelling Gibberella fujikuroi growth and GA3 production in solid-state fermentation. Process Biochem 37:1033–1044. doi:10.1016/S0032-9592(01)00314-4

    Article  CAS  Google Scholar 

  10. Glenn JK, Gold MH (1985) Purification and characterisation of an extracellular Mn(II)-dependent peroxidase from the lignin degrading basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341. doi:10.1016/0003-9861(85)90217-6

    Article  PubMed  CAS  Google Scholar 

  11. Gómez J, Pazos M, Rodríguez Couto S, Sanroman A (2005) Chesnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. J Food Eng 68:315–319. doi:10.1016/j.jfoodeng.2004.06.005

    Article  Google Scholar 

  12. Gramss G, Günther TH, Fritsche W (1998) Spot tests for oxidative enzyme in ectomycorrhizal, wood-, and litter decaying fungi. Mycol Res 102:67–72. doi:10.1017/S095375629700436X

    Article  CAS  Google Scholar 

  13. Gupta R, Gigras P, Mohapatra H, Goswami V, Chauhan B (2003) Microbial α-amilases: a biotechnological perspective. Process Biochem 38:1599–1616. doi:10.1016/S0032-9592(03)00053-0

    Article  CAS  Google Scholar 

  14. Hamidi-Esfahani Z, Shojaosadati SA, Rinzema A (2004) Modelling of simultaneous effect of moisture and temperature on Aspergillus niger growth in solid-state fermentation. Biochem Eng J 21:265–272. doi:10.1016/j.bej.2004.07.007

    Article  CAS  Google Scholar 

  15. Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579. doi:10.1007/s00253-005-0010-1

    Article  PubMed  CAS  Google Scholar 

  16. Magnelli P, Forchiassin F (1999) Regulation of the cellulase complex production by Saccobolus saccoboloides: induction and repression by carbohydrates. Mycologia 91:359–364. doi:10.2307/3761382

    Article  CAS  Google Scholar 

  17. Mau JL, Chang CN, Huang SJ, Chen CC (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87:111–118. doi:10.1016/j.foodchem.2003.10.026

    Article  CAS  Google Scholar 

  18. Nelson NJ (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  19. Olsson L, Christensen T, Hansen K, Palmqvist E (2003) Influence of the carbon source on production of cellulase, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme Microb Technol 33:612–619. doi:10.1016/S0141-0229(03)00181-9

    Article  CAS  Google Scholar 

  20. Papinutti L, Forchiassin F (2007) Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. J Food Eng 81:54–59. doi:10.1016/j.jfoodeng.2006.10.006

    Article  CAS  Google Scholar 

  21. Plassard CS, Mousain DG, Salsac LE (1982) Estimation of mycelial growth of basidiomycetes by means of chitin determination. Phytochemistry 21:345–348. doi:10.1016/S0031-9422(00)95263-4

    Article  CAS  Google Scholar 

  22. Pointing SB, Jones EB, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92:139–144. doi:10.2307/3761458

    Article  CAS  Google Scholar 

  23. Shuttleworth KK, Postile L, Bollag JM (1986) Production of induced laccase by the fungus Rhizoctonia praticola. Can J Microbiol 32:867–870

    Article  CAS  Google Scholar 

  24. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663. doi:10.1126/science.221.4611.661

    Article  PubMed  CAS  Google Scholar 

  25. Volk TJ, Leonard TJ (1989) Physiological and environmental studies of sclerotium formation and maturation in isolates of Morchella crassipes. Appl Environ Microbiol 55:3095–3100

    PubMed  CAS  Google Scholar 

  26. Winder RS (2006) Cultural studies of Morchella elata. Mycol Res 110:612–623. doi:10.1016/j.mycres.2006.02.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina, and Universidad de Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Papinutti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papinutti, L., Lechner, B. Influence of the carbon source on the growth and lignocellulolytic enzyme production by Morchella esculenta strains. J Ind Microbiol Biotechnol 35, 1715–1721 (2008). https://doi.org/10.1007/s10295-008-0464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0464-0

Keywords

Navigation