Skip to main content
Log in

3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

3-Hydroxypropionaldehyde (3-HPA) is a toxic intermediary metabolite in the biological route of 1,3-propanediol biosynthesis from glycerol. 3-HPA accumulated in culture medium would arouse an irreversible cessation of the fermentation process. The role of substrate (glycerol) on 3-HPA accumulation in aerobic fermentation was investigated in this paper. 1,3-Propanediol oxidoreductase and glycerol dehydratase, two key enzyme catalyzing reactions of 3-HPA formation and consumption, were sensitive to high concentration of 3-HPA. When the concentration of 3-HPA increased to a higher level in medium (ac 10 mmol/L), the activity of 1,3-propanediol oxidoreductase in cell decreased correspondingly, which led to decrease of the 3-HPA conversion rate, then the 3-HPA concentration increasing was accelerated furthermore. 3-HPA accumulation in culture medium was triggered by this positive feedback mechanism. In the cell exponential growth phase, the reaction catalyzed by 1,3-propanediol oxidoreductase was the rate limiting step in 1,3-propanediol production. The level of 3-HPA in culture medium could be controlled by the substrate (glycerol) concentration, and lower level of glycerol could avoid 3-HPA accumulating to a high, lethal concentration. In fed batch fermentation, under the condition of initial glycerol concentration 30 g/L, and keeping glycerol concentration lower than 7–8 g/L in cell exponential growth phase, 3-HPA accumulation could not be incurred. Based on this result, a glycerol feeding strategy was set up in fed batch fermentation. Under the optimized condition, 50.1 g/L of 1,3-propanediol was produced in 24 h, and 73.1 g/L of final 1,3-propanediol concentration was obtained in 54 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbad-Andaloussi S, Guedon E, Spiesser E, Petitdemange H (1996) Glycerol dehydratase activity: the limiting step for 1,3-propanediol production by Clostridium butyricum. Lett Appl Microbiol 22:311–314. doi:10.1111/j.1472-765X.1996.tb01168.x

    Article  CAS  Google Scholar 

  2. Abbad-Andaloussi S, Manginot-Durr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterisation of Clostridium butyricum DSM 5431 mutants with increased resitance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417

    PubMed  CAS  Google Scholar 

  3. Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. Part III: enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552. doi :10.1002/(SICI)1097-0290(19980905)59:5<544::AID-BIT3>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  4. Arntz D, Haas T, Müller A, Wiegand N (1991) Kinetische untersuchung zur hydratisierung von acrolein. Chem Ing Tech 63:733–735. doi:10.1002/cite.330630714

    Article  CAS  Google Scholar 

  5. Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448–1451

    PubMed  CAS  Google Scholar 

  6. Barbirato F, Soucaille P, Bories A (1996) Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during fermentation of glycerol by Enterobacter agglomerans. Appl Environ Microbiol 62(12):4405–4409

    PubMed  CAS  Google Scholar 

  7. Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum—batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26. doi:10.1038/sj.jim.7000155

    Article  PubMed  CAS  Google Scholar 

  8. Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457. doi:10.1007/BF00242936

    Article  CAS  Google Scholar 

  9. Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:116–125. doi:10.1021/bp9701325

    Article  PubMed  CAS  Google Scholar 

  10. Cirde SJ, Stone L, Boruff CS (1945) Acrolein determination by means of tryptophane. Ind Eng Chem Anal Ed 17:259–262. doi:10.1021/i560140a021

    Article  Google Scholar 

  11. Decker WD (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 16:143–149. doi:10.1111/j.1574-6976.1995.tb00162.x

    Article  Google Scholar 

  12. Forage RG, Lin ECC (1982) dha systems mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599

    PubMed  CAS  Google Scholar 

  13. Johnson EA, Lin ECC (1987) Klebsiella pneumoniae 1,3-propanediol: NAD + oxidoreductase. J Bacteriol 169:2050–2054

    PubMed  CAS  Google Scholar 

  14. Hao J, Lin RH, Zheng ZM, Liu HJ, Liu DH (2008) Isolation and characterization of microorganisms able to produce 1,3-propanediolunder aerobic conditions. World J Microbiol Biotechnol 24:1731–1740. doi:10.1007/s11274-008-9665-y

    Article  CAS  Google Scholar 

  15. Hao J, Wang W, Tian JS, Li JL, Liu DH (2008) Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol 35:735–741. doi:10.1007/s10295-008-0340-y

    Article  PubMed  CAS  Google Scholar 

  16. Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126. doi:10.1007/BF00176511

    Article  CAS  Google Scholar 

  17. Knifton JF, James TG, Slaugh LH, Allen KD, Weider PR, Powell JB (2004) One-step production of 1,3-propanediol from ethylene oxide and syngas with a cobalt–iron catalyst. US Patent. 6.750.373

  18. Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29:1281–1285. doi:10.1007/s10529-007-9398-2

    Article  PubMed  CAS  Google Scholar 

  19. Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86. doi:10.1016/S0141-0229(96)00087-7

    Article  CAS  Google Scholar 

  20. Menzel K, Ahrens K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol Bioeng 60:617–626. doi:10.1002/(SICI)1097-0290(19981205)60:5<617::AID-BIT12>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura CE, Whitedy GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459. doi:10.1016/j.copbio.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  22. Papanikolaoua S, Fakas S, Ficka M, Chevalota I, Galiotou-Panayotoub M, Komaitisb M et al (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71. doi:10.1016/j.biombioe.2007.06.007

    Article  Google Scholar 

  23. Papanikolaou S, Patricia RS, Bernard P, Blancharda F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208. doi:10.1016/S0168-1656(99)00217-5

    CAS  Google Scholar 

  24. Pflugmacher U, Gottschalk G (1994) Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl Microbiol Biotechnol 41:313–316. doi:10.1007/BF00221225

    Article  CAS  Google Scholar 

  25. Reimann A, Biebl H (1996) Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture: feeding strategy for glycerol and ammonium. Biotechnol Lett 18:827–832. doi:10.1007/BF00127897

    Article  CAS  Google Scholar 

  26. Reimann A, Biebl H, Deckwer WD (1998) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 49:359–363. doi:10.1007/s002530051182

    Article  CAS  Google Scholar 

  27. Yang G, Tian JS, Li JL (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024. doi:10.1007/s00253-006-0563-7

    Article  PubMed  CAS  Google Scholar 

  28. Zeng AP, Bieb H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    PubMed  CAS  Google Scholar 

  29. Zhao YN, Chen G, Yao SJ (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32:93–99. doi:10.1016/j.bej.2006.09.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Hao or Dehua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, J., Lin, R., Zheng, Z. et al. 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae . J Ind Microbiol Biotechnol 35, 1615–1624 (2008). https://doi.org/10.1007/s10295-008-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0405-y

Keywords

Navigation