Skip to main content
Log in

Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Colored wastewater from textile industries is a consequence of dye manufacturing processes. Two percent of dyes that are produced are discharged directly in aqueous effluent and more than 10% are subsequently lost during the textile coloration process. It is not surprising that these compounds have become a major environmental concern. In that context, we have evaluated the potential use of Streptomyces coelicolor laccase for decolourization of various dyes with and without a mediator. Results showed that in all cases the combination of laccase and the mediator acetosyringone was able to rapidly decolourize, to various degrees, all the dyes tested. In 10 min, decolourization was achieved at 94% for acid blue 74, 91% for direct sky blue 6b and 65% for reactive black 5. Furthermore, decolourization was achieved at 21% for reactive blue 19 and at 39% for the direct dye Congo red in 60 min. These results demonstrate the potential use of this laccase in combination with acetosyringone, a natural mediator, for dye decolourization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshida H (1883) Chemistry of lacquer (urushi). J Chem Soc Trans 43:472–486

    Article  CAS  Google Scholar 

  2. Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  PubMed  CAS  Google Scholar 

  3. Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    Article  PubMed  CAS  Google Scholar 

  4. Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  5. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    Article  PubMed  CAS  Google Scholar 

  6. Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425

    Article  PubMed  CAS  Google Scholar 

  7. Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    PubMed  CAS  Google Scholar 

  8. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  9. Burton SG (2003) Laccases and phenol oxidases in organic synthesis—a review. Curr Org Chem 7:1317–1331

    Article  CAS  Google Scholar 

  10. Kenealy WR, Jeffries TW (2003) Enzyme processes for pulp and paper: a review of recent developments. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. ACS symposium series, vol 845. American Chemical Society, Washington, pp 210–239

  11. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  PubMed  CAS  Google Scholar 

  12. Minussi RC, Pastore GM, Duran N (2007) Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresour Technol 98:158–164

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  PubMed  CAS  Google Scholar 

  14. Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  PubMed  CAS  Google Scholar 

  15. Moldes D, Sanroman MA (2006) Amelioration of the ability to decolorize dyes by laccase: relationship between redox mediators and laccase isoenzymes in Trametes versicolor. World J Microbiol Biotechnol 22:1197–1204

    Article  CAS  Google Scholar 

  16. Hao OJ, Kim H, Chiang PC (1999) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  Google Scholar 

  17. Kandelbauer A, Guebitz G (2005) Bioremediation for the decolorization of textile dyes—a review. In: Environmental Chemistry, Springer, Berlin, pp 269–288

  18. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008) Homologous cloning, expression and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourization of an indigo dye. Appl Microbiol Biotechnol (in press)

  19. Manu B, Chaudhari S (2002) Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour Technol 82:225–231

    Article  PubMed  CAS  Google Scholar 

  20. Jahmeerbacus MI, Kistamah N, Ramgulam RB (2004) Fuzzy control of dyebath pH in exhaust dyeing. Coloration Technol 120:51–55

    Article  CAS  Google Scholar 

  21. Hurtubise Y, Shareck F, Kluepfel D, Morosoli R (1995) A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol Microbiol 17:367–377

    Article  PubMed  CAS  Google Scholar 

  22. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  23. Ward AC (1992) Rapid analysis of yeast transformants using colony-PCR. BioTechniques 13:350

    PubMed  CAS  Google Scholar 

  24. Kluepfel D, Vats-Mehta S, Aumont F, Shareck F, Morosoli R (1990) Purification and characterization of a new xylanase (xylanase B) produced by Streptomyces lividans 66. Biochem J 267:45–50

    PubMed  CAS  Google Scholar 

  25. Childs RE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2, 2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103

    PubMed  CAS  Google Scholar 

  26. Jaouani A, Guillen F, Penninckx MJ, Martinez AT, Martinez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb Technol 36:478–486

    Article  CAS  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  28. Claus H, Faber G, Konïg H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    Article  PubMed  CAS  Google Scholar 

  29. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–196

    Article  CAS  Google Scholar 

  30. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  PubMed  CAS  Google Scholar 

  31. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: A small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13:2388–2397

    Article  PubMed  CAS  Google Scholar 

  32. Camarero S, Ibarra D, Martinez AT, Romero J, Gutierrez A, del Rio JC (2007) Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol 40:1264–1271

    Article  CAS  Google Scholar 

  33. Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38:4905–4909

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canada research chair on value-added papers from the Centre Intégré en Pâtes et Papiers (Trois-Rivières, Canada), AgroTerra Biotech (Trois-Rivières, Canada), the Institut National de la Recherche Scientifique–Institut Armand-Frappier (Laval, Canada) and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Daneault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubé, E., Shareck, F., Hurtubise, Y. et al. Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. J Ind Microbiol Biotechnol 35, 1123–1129 (2008). https://doi.org/10.1007/s10295-008-0391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0391-0

Keywords

Navigation