Skip to main content
Log in

Fed batch bioconversion of 2-propanol by a solvent tolerant strain of Alcaligenes faecalis entrapped in Ca-alginate gel

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A gram-negative, rod-shaped, aerobe, capable of converting 2-propanol (isopropanol, IPA) to acetone was isolated from an oil/sump, and identified by 16 S rDNA analysis as Alcaligenes faecalis. Investigations showed this strain to be extremely solvent-tolerant and it was subsequently named ST1. In this study, A. faecalis ST1 cells were immobilized by entrapment in Ca-alginate beads (3 mm in diameter), and used in the bioconversion of high concentration IPA. The biodegradation rates and the corresponding microbial growth inside the beads were measured at four different IPA concentration ranges from 2 to 15 g l−1. The maximum cell concentration obtained was 9.59 g dry cell weight (DCW) l−1 medium which equated to 66 g DCW l−1 gel, at an initial IPA concentration of 15 g l−1 after 216 h of incubation. A maximum biodegradation rate of 0.067 g IPA g cells−1 h−1 was achieved for 5 g l−1 IPA where an increase in IPA concentration to 38 g l−1 caused reduction in bead integrity. A modified growth medium was developed which allowed repeated use of the beads for more than 42 days without any loss of integrity and continued bioconversion activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNEP Publications (1995) 2-propanol. [online]. http://www.chem.unep.ch/irptc/sids/volume6/part2/v62_propanol.pdf

  2. Hatch LF (1961) Isopropyl alcohol. McGraw-Hill, New York, pp 3–13

    Google Scholar 

  3. Derwent RG, Pearson JK (1997) Improving air quality in the United Kingdom-the solvent contribution. Environ Technol 18:1029–1036

    Article  CAS  Google Scholar 

  4. Dervakos GA, Webb C (1991) On the merits of viable-cell immobilization. Biotechnol Adv 9:559–612

    Article  CAS  Google Scholar 

  5. Jianlong W, Ping L, Yi Q (1995) Microbial degradation of di-butyl phthalate. Chemosphere 31:4051–4056

    Article  Google Scholar 

  6. Jianlong W, Yi Q (1999) Microbial degradation of 4-chlorophenol by microorganism entrapped in carrageenan-chitosan gels. Chemosphere 38:3109–3117

    Article  CAS  Google Scholar 

  7. Komancová M, Jurčová I, Kochánková L, Burkhard J (2003) Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere 20:537–543

    Article  Google Scholar 

  8. Lee SL, Cheng HY, Chen WC, Chou CC (1998) Production of decalactone from ricinoleic acid by immobilized cells of Sporidiobolus salmonicolor. Process Biochem 33:453–459

    Article  CAS  Google Scholar 

  9. Mukerjee-Dhar G, Shimura M, Kimbara K (1998) Degradation of polychlorinated biphenyl by cells of Rhodococcus opacus strain TSP203 immobilized in alginate and in solution. Enzyme Microb Technol 23:34–41

    Article  CAS  Google Scholar 

  10. Roig MG, Pedraz MA, Sanchez JM, Huska J, Tóth D (1998) Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: II. Comamonas terrigena N3H. J Mol Catal B: Enzym 4:271–281

    Article  CAS  Google Scholar 

  11. Carvalho W, Silva SS, Santos JC, Converti A (2003) Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb Technol 32:553–559

    Article  CAS  Google Scholar 

  12. Chang YC, Chou CC (2002) Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No. 23. Biotechnol Appl Biochem 35:69–74

    Article  CAS  Google Scholar 

  13. Bisping A, Rehm HJ (1988) Multistep reactions with immobilized microorganism. Biotechnol Appl Biochem 10:87–98

    CAS  Google Scholar 

  14. Brodelius P, Vandamme EJ (1987) Immobilized cells. In: Kennedy JF (ed) Biotechnology, vol 7a. VCH, Germany, pp 405–464

    Google Scholar 

  15. Trevors JT, Van Elsas JD, Lee H, Van Overbeek LS (1992) Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases 1:61–69

    Google Scholar 

  16. Bettamann H, Rehm HJ (1985) Continuous degradation of phenol(s) by Pseudomonas putida p8 entrapped in polyacrylamide-hydrazide. Appl Microbiol Biotechnol 22:389–393

    Google Scholar 

  17. Sahasrrabudhe SR, Modi AJ, Modi VV (1988) Dehalogenation of 3-chlorobenzoate by immobilized Pseudomonas sp. B13 cells. Biotechnol Bioeng 31:889–893

    Article  Google Scholar 

  18. O’Reilly KT, Crawford RL (1989) Degradation of pentachlorophenol by polyurethane-immobilized Flvaobacterium cells. Appl Env Microbiol 55:2115–2118

    Google Scholar 

  19. Ferschl A, Lodi M, Zelmuller G, Hinteregger C, Streichsbier F (1991) Continuous degradation of 3-chloroaniline by calcium alginate-entrapped cells of Pseudomonas acidovaranas CA 28: influence of additional substrates. Appl Microbiol Biotechnol 35:544–549

    Article  CAS  Google Scholar 

  20. Menke B, Rehm HJ (1992) Degradation of mixture of monochlorophenols and phenols as substrates for free and immobilized cells of Alcaligenes sp. A7-2. Appl Microbiol Biotechnol 37:655–661

    Article  CAS  Google Scholar 

  21. Lee ST, Rhee SK, Lee GM (1994) Biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Appl Microbiol Biotechnol 41:652–657

    Article  CAS  Google Scholar 

  22. Kochar GS, Kahlon RS (1995) Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by immobilized cells of Pseudomonas putida. J Gen Appl Microbiol 41:367–370

    Article  CAS  Google Scholar 

  23. Manohar S, Kim CK, Karegoudar TB (2001) Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl Microbiol Biotechnol 55:311–316

    Article  CAS  Google Scholar 

  24. Sharanagouda U, Karegoudar TB (2002) Degradation of 2-methylnaphthalene by free and immobilized cells of Pseudomonas sp. strain NGK1. World J Microbiol Biotechnol 18:225–230

    Article  CAS  Google Scholar 

  25. Jianlong W, Ping L, Yi Q (1997) Biodegradation of phthalic acid esters by immobilized microbial cells. Environ Int 23(6):775–782

    Article  CAS  Google Scholar 

  26. Jianlong W, Liping H, Hanchang S, Yi Q (2001) Biodegradation of quinoline by gel immobilized Burkholderia sp. Chemosphere 44:1041–1046

    Article  CAS  Google Scholar 

  27. Mosbach K (1987) Cell immobilization in calcium alginate. In: Bucke C (ed) Methods in enzymology, vol 135. Academic Press, Orlando, p 175

    Google Scholar 

  28. Westmeier F, Rehm HJ (1985) Biodegradation of 4-chlorophenol by entrapped Alcaligenes sp. A 7-2. Appl Microbiol Biotechnol 22:301–305

    Article  CAS  Google Scholar 

  29. Bustard MT, McEvoy EM, Goodwin JAS, Burgess JG, Wright PC (2000) Biodegradation of propanol and isopropanol by a mixed microbial consortium. Appl Microbiol Biotechnol 54:424–431

    Article  CAS  Google Scholar 

  30. Mohammad BT, Bustard MT (2003) Application of solvent tolerant bacteria for biocatalytic oxidation of high concentration 2-propanol. Ph.D. thesis, Heriot-Watt University, Edinburgh UK

  31. Angelidaki I, Petersen SP, Ahring BK (1990) Effects of lipids on thermophilic anaerobic digestion and reaction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol 33:469–472

    Article  CAS  Google Scholar 

  32. Bickerstaff GF (1997) Immobilization of enzymes and cells. Humana Press, Inc, New Jersey

    Google Scholar 

  33. Fogler HS (1992) Elements of chemical reaction engineering. Prentice-Hall, USA, pp 660–700

    Google Scholar 

  34. Wijffels RH (2001) Immobilized cells. Springer, Germany

    Google Scholar 

  35. Bettamann H, Rehm HJ (1984) Degradation of phenol by polymer entrapped microorganism. Appl Microbiol Biotechnol 20:285–290

    Article  Google Scholar 

  36. Lin JE, Wang HY (1991) Degradation of pentachlorophenol by non-immobilzed, immobilized, and c0-immobilzed Arthrobacter cells. J Ferment Bioeng 72:311–314

    Article  CAS  Google Scholar 

  37. Sahasrabudhe A, Pande A, Modi V (1991) Dehalogenation of a mixture of chloroaromatics by immobilized Pseudomonas sp. US1 ex cells. Appl Microbiol Biotechnol 35:830–832

    Article  CAS  Google Scholar 

  38. Smidsrød O, Skjak-Bræk G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  Google Scholar 

  39. Keweloh H, Heipieper HJ, Rehm HJ (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31:383–389

    Article  CAS  Google Scholar 

  40. Shim H, Shin EB, Yang ST (2002) A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas flurescens. Adv Environ Res 7(1):203–216

    Article  CAS  Google Scholar 

  41. Llanes N, Fernandes P, Léon R, Cabral JMS, Pinheiro HM (2001) Conversion of β-sitosterol by Mycobacterium sp. NRRL B-3805 cells immobilized on Celite supports. J Mol Catal B: Enzym 11(4–6):523–530

    Article  CAS  Google Scholar 

  42. Dursun AY, Aksu Z (2002) Effect of internal diffusivity of ferrous (II) cyanide complex ions in Ca-alginate immobilized Pseudomonas fluorescens gel beads on the biodegradation rate. Process Biochem 37(7):747–752

    Article  CAS  Google Scholar 

  43. Chung TP, Tseng HY, Juang RS (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem 38(10):1497–1507

    Article  CAS  Google Scholar 

  44. Cho YG, Rhee SK, Lee ST (2000) Influence of phenol on biodegradation of p-nitrophenol by freely suspended and immobilized Nocardioides sp. NSP41. Biodegradation 11:21–28

    Article  CAS  Google Scholar 

  45. Rhee SK, Lee GM, Lee ST (1996) Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Appl Microbiol Biotechnol 44:816–822

    CAS  Google Scholar 

Download references

Acknowledgments

MTB would like to acknowledge the UK’s Royal Academy of Engineering for provision of a Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balsam T. Mohammad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammad, B.T., Bustard, M.T. Fed batch bioconversion of 2-propanol by a solvent tolerant strain of Alcaligenes faecalis entrapped in Ca-alginate gel. J Ind Microbiol Biotechnol 35, 677–684 (2008). https://doi.org/10.1007/s10295-008-0325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0325-x

Keywords

Navigation