Skip to main content
Log in

Proteases production by two Vibrio species on residuals marine media

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

A comparative study was carried out on the growth and production of alkaline proteases by two Vibrio species using different marine peptones from fish viscera residues. The bacteria tested, Vibrio anguillarum and Vibrio splendidus, are producers of high levels of proteolytic enzymes which act as factors of virulence in fish cultures, causing high mortality rates. The kinetic assays and subsequent comparison with the parameters obtained from the adjustment to various mathematical models, highlighted the potential interest of the media formulated, for their possible production on an industrial scale, particularly the production of proteases by V. anguillarum growing in rainbow trout and squid peptones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrawal D, Patidar P, Banerjee T, Patil S (2005) Alkaline protease production by a soil isolate of Beauveria felina under SSF condition: parameter optimization and application to soy protein hydrolysis. Process Biochem 40:1131–1136

    Article  CAS  Google Scholar 

  2. Austin B, Stuckey LF, Roberston PAW, Effendi I, Griffith DRW (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis 18:93–96

    Article  Google Scholar 

  3. Banerjee UC, Agnihotri R, Bhattacharyya BC (1993) Purification of alkaline protease of Rhizopus oryzae by foam fractionation. Bioprocess Eng 9:245–248

    Article  CAS  Google Scholar 

  4. Barker TW, Worgan JT (1981) The utilisation of palm oil processing effluents as substrates for microbial protein production by the fungus Aspergillus oryzae. Eur J Appl Microbiol Biotechnol 11:234–240

    Article  CAS  Google Scholar 

  5. Beg QK, Sahai V, Gupta R (2003) Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Proc Biochem 39:203–209

    Article  CAS  Google Scholar 

  6. Cabo ML, Murado MA, González MP, Pastoriza L (2001) Effects of aeration and pH gradient on nisin production A mathematical model. Enzyme Microb Technol 29:264–273

    Article  CAS  Google Scholar 

  7. Cancre I, Ravallec R, Van Wormhoudt A, Stenberg E, Gildberg A, Le Gal Y (1999) Secretagogues and growth factors in fish and crustacean protein hydrolysates. Mar Biotechnol 1:489–494

    Article  CAS  Google Scholar 

  8. De Azeredo LAI, Freire DMG, Soares RMA, Leite SGF, Coelho RRR (2004) Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme Microb Technol 34:354–358

    Article  CAS  Google Scholar 

  9. De la Broise D, Dauer G, Gildberg A, Guérard F (1998) Evidence of positive effects of peptone hydrolysis rate on Escherichia coli culture kinetics. J Mar Biotechnol 6:111–115

    CAS  Google Scholar 

  10. Denkin S, Nelson D (2004) Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl Environ Microbiol 70:4193–4204

    Article  CAS  Google Scholar 

  11. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  12. Dufossé L, De la Broise D, Guérard F (2001) Evaluation of nitrogenous substrates such as peptones from fish: a new method based on Gompertz modeling of microbial growth. Curr Microbiol 42:32–38

    Article  Google Scholar 

  13. Dutta JR, Dutta PK, Banerjee R (2005) Modeling and optimization of protease production by a newly isolated Pseudomonas sp Using a genetic algorithm. Proc Biochem 40:879–884

    Article  CAS  Google Scholar 

  14. Ellouz Y, Bayoudh A, Kammoun S, Gharsallah N, Nasri M (2001) Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresour Technol. 80:49–51

    Article  CAS  Google Scholar 

  15. Estrada-Badillo C, Márquez-Rocha FJ (2003) Effect of agitation rate on biomass and protease production by a marine bacterium Vibrio harveyi cultured in a fermentor. World J Microb Biotechnol 19:129–133

    Article  CAS  Google Scholar 

  16. Frost GM, Moss DA (1987) Production of enzymes by fermentation. In: Kennedy JF (ed) Biotecnology. New York: vol. 7 VCII p 65–212

  17. Godfrey T, West S (1996) Industrial enzymology, 2nd edn. Macmillan, New York. ISBN 0–33359464–9. p.3

  18. Gray CJ, Barker SA, Dhariwal MS, Sullivan JM (1985) Assay of the high-alkaline proteinase from alkalophilic Bacillus PB92 using a chromogenic tripeptide substrate. Biotechnol Bioeng 27:1717–1720

    Article  CAS  Google Scholar 

  19. Green JH, Paskell SL, Goldmintz D (1977) Fish peptones for microbial media developed from red hake and from fishery by-product. J Food Prot 40:181–186

    Google Scholar 

  20. Gunnlaugsdóttir B, Gudmundsdóttir BK (1997) Pathogenicity of atypical Aeromonas salmonicida in Atlantic salmon compared with protease production. J Appl Microbiol 83:542–551

    Article  Google Scholar 

  21. Gupta R, Beg QK, Khan S, Chauhan B (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60:381–395

    Article  CAS  Google Scholar 

  22. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  Google Scholar 

  23. Hanlon GW, Hodges NA (1981) Bacitracin and protease production in relation to sporulation during exponential growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources. J Bacteriol 147:427–431

    CAS  Google Scholar 

  24. Havilah EJ, Wallis DM, Morris R, Woolnough JA (1977) A microcolorimetric method for determination of ammonia in Kjeldahl digests with a manual spectrophotometer. Lab Pract 545–547

  25. Herranz C, Martínez JM, Rodríguez JM, Hernández PE, Cintas LM (2001) Optimization of enterocin P production by batch fermentation of Enterococcus faecium P13 at constant pH. Appl Microbiol Biotechnol 56:378–383

    Article  CAS  Google Scholar 

  26. Ikeuchi H, Kunugi S, Oda K (2000) Acitivity and stability of a neutral protease from Vibrio sp (vimelysin) in a pressure–temperature gradient. Eur J Biochem 261:979–983

    Article  Google Scholar 

  27. Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus s JB-99 in a chemically defined medium. Proc Biochem 37:139–144

    Article  CAS  Google Scholar 

  28. Joo H-S, Chang C-S (2005) Production of protease from a new alkalophilic Bacillus sp I-312 grown on soybean meal: optimization and some properties. Proc Biochem 40:1263–1270

    Article  CAS  Google Scholar 

  29. Kumar CG (2002) Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Lett Appl Microbiol 34:13–17

    Article  CAS  Google Scholar 

  30. Kumar CG, Takagi H (1999) Microbial alkaline proteases from a bioindustrial viewpoint. Biotecnol Adv 17:561–594

    Article  CAS  Google Scholar 

  31. Kunitz M (1947) Crystalline soybean trypsin inhibitor 2: general properties. J Gen Physiol 30:291–310

    Article  CAS  Google Scholar 

  32. Kunugi S, Koyasu A, Takahashi S, Oda K (1997) Peptide condensation activity of a neutral protease from Vibrio sp T1800 (vimelysin). Biotechnol Bioeng 53:387–390

    Article  CAS  Google Scholar 

  33. Kurbanoglu EB, Kurbanoglu NI (2003) Utilization as peptone for glycerol production of ram horn waste with a new process. Energy Conv Manag 44:2125–2133

    Article  CAS  Google Scholar 

  34. Layman PL (1986) Industrial enzymes: battling to remain specialties. Chem Eng News 64:11–14

    Google Scholar 

  35. Lejuene R, Callewaert R, Crabbé K, De Vuyst L (1998) Modelling the growth and bacteriocin production by Lactobacillus amylophilus DCE 471 in batch cultivation. J Appl Microbiol 84:159–168

    Article  Google Scholar 

  36. Longo MA, Novella IS, García LA, Díaz M (1999) Comparison of Bacillus subtilis and Serratia marcescens as protease producers under different operating conditions. J Biosci Bioeng 88:35–40

    Article  CAS  Google Scholar 

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 270:27299–27304

    Google Scholar 

  38. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation batch process, and controlled pH. J Biochem Microbiol Tech Eng 16:52–55

    Google Scholar 

  39. Mei C, Jiang X (2005) A novel surfactant- and oxidation-stable alkaline protease from Vibrio metschnikovii DL 33–51. Proc Biochem 40:2167–2172

    Article  CAS  Google Scholar 

  40. Mercier P, Yerushalmi L, Rouleau D, Dochain D (1992) Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus. J Chem Technol Biotechnol 55:111–121

    Article  CAS  Google Scholar 

  41. Milton DL, Norqvist A, Wolf-Watz H (1992) Cloning of metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol 174:7235–7244

    CAS  Google Scholar 

  42. Norqvist A, Norrman B, Wolf-Watz H (1990) Identification and characterization of zinc metalloprotease associated with invasion by the fish pathogen Vibrio anguillarum. Infect Immun 58:3731–3736

    CAS  Google Scholar 

  43. Olsson JC, Westerdahl A, Conway PL, Kjelleberg S (1992) Intestinal colonization potential of turbot (Scophthalmus maximus)- and dab (Limanda limanda)-associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol 58:551–556

    CAS  Google Scholar 

  44. Parente E, Hill C (1992) A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J Appl Bacteriol 73:290–298

    CAS  Google Scholar 

  45. Rahman RNZRA, Geok LP, Basri M, Salleh AB (2005) An organic solvent-tolerant protease from Pseudomonas aeruginosa strain K Nutritional factors affecting protease production. Enzyme Microb Technol 36:749–757

    Article  CAS  Google Scholar 

  46. Raninger A, Steiner W (2003) Accelerated process development for protease production in continuous multi-stage cultures. Biotechnol Bioeng 82:517–524

    Article  CAS  Google Scholar 

  47. Rao M, Tankasale A, Ghatge M, Desphande V (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–634

    CAS  Google Scholar 

  48. Stewart DES, Bleakley CR, Galloway TS (2004) Characteristics of Vibrio cholerae proteinases: potential, candidate vaccine antigens. Vaccine 22:3026–3034

    Article  CAS  Google Scholar 

  49. Strickland JDH, Parsons TR (1968) A practical handbook of sea water analysis. Bull Fish Res Board Can 167:57–62

    Google Scholar 

  50. Tjalsma H, Koetje EJ, Kiewiet R, Kuipers OP, Kolkman M, van der Laan J, Daskin R, Ferrari E, Bron S (2004) Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis. J Appl Microbiol 96:569–578

    Article  CAS  Google Scholar 

  51. Tremacoldi C, Carmona EC (2005) Production of extracellular alkaline proteases by Aspergillus clavatus. World J Microbiol Biotechnol 21:169–172

    Article  CAS  Google Scholar 

  52. Ustáriz FJ, Laca A, García LA, Díaz M (2004) Fermentation of individual proteins for protease production by Serratia marcescens. Biochem Eng J 19:147–153

    Article  CAS  Google Scholar 

  53. Vázquez JA, González MP, Murado MA (2004a) A new marine medium. Use of the different fish peptones and comparative study of the growth of selected species of marine bacteria. Enzyme Microb Technol 35:385–392

    Google Scholar 

  54. Vázquez JA, González MP, Murado MA (2004b) Peptones from autohydrolysed fish viscera for nisin and pediocin production. J Biotechnol 112:299–311

    Article  CAS  Google Scholar 

  55. Vázquez JA, Mirón J, González MP, Murado MA (2005) Bacteriocin production and pH gradient Some mathematical models and their problems. Enzyme Microb Technol 37:54–67

    Article  CAS  Google Scholar 

  56. Vázquez JA, González MP, Murado MA (2006) Preliminary tests on nisin and pediocin production using waste protein sources Factorial and kinetic studies. Bioresource Technol 97:605–613

    Article  CAS  Google Scholar 

  57. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Xunta de Galicia (PGIDIT04TAM007001CT) and UE-Life Program (BE-FAIR LIFE05 ENV/E/000267-BE-FAIR) for financial support. Thanks also to Ana Durán, Margarita Nogueira and Araceli Menduiña for technical assistance. Dr. José Antonio Vázquez Álvarez had a postdoctoral contract (CSIC-I3P-PC 2003, financed by the European Social Fund). The raw materials were kindly supplied by the following companies: Alimentos Arousa S.A. (yellowfin tuna), Clavo Congelados S.A. (squid), the fish market of the port of Vigo (swordfish) and Isidro de la Cal S.A. (trout).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Vázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, J.A., Docasal, S.F., Mirón, J. et al. Proteases production by two Vibrio species on residuals marine media. J IND MICROBIOL BIOTECHNOL 33, 661–668 (2006). https://doi.org/10.1007/s10295-006-0096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0096-1

Keywords

Navigation