Skip to main content
Log in

Characterization of product capture resin during microbial cultivations

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Various bioactive small molecules produced by microbial cultivation are degraded in the culture broth or may repress the formation of additional product. The inclusion of hydrophobic adsorber resin beads to capture these products in situ and remove them from the culture broth can reduce or prevent this degradation and repression. These product capture beads are often subjected to a dynamic and stressful microenvironment for a long cultivation time, affecting their physical structure and performance. Impact and collision forces can result in the fracturing of these beads into smaller pieces, which are difficult to recover at the end of a cultivation run. Various contaminating compounds may also bind in a non-specific manner to these beads, reducing the binding capacity of the resin for the product of interest (fouling). This study characterizes resin bead binding capacity (to monitor bead fouling), and resin bead volume distributions (to monitor bead fracture) for an XAD-16 adsorber resin used to capture epothilone produced during myxobacterial cultivations. Resin fouling was found to reduce the product binding capacity of the adsorber resin by 25–50%. Additionally, the degree of resin bead fracture was found to be dependent on the cultivation length and the impeller rotation rate. Microbial cultivations and harvesting processes should be designed in such a way to minimize bead fragmentation and fouling during cultivation to maximize the amount of resin and associated product harvested at the end of a run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

d :

resin bead diameter (cm)

d i :

impeller diameter (cm)

ICS:

impeller collision severity function (g cm2/s3)

n :

impeller rotational speed (revolutions/s)

TCS:

turbulent bead collision severity function (g cm2/s3)

v :

velocity of bead sized eddies in the turbulent fluid (cm/s)

v tip :

velocity of fluid over the outer edge of the impeller blade (cm/s)

V :

volume of bioreactor (cm3)

α :

volume fraction of beads (dimensionless)

ε :

turbulent power dissipation per mass of liquid (cm2/s3)

ρ b :

density of XAD-16 adsorber resin beads (g/cm3)

ν :

kinematic viscosity of medium (cm2/s)

References

  1. Arslanian R, Parker C, Wang P, McIntire J, Lau J, Starks C, Licari P (2002) Large-scale isolation and crystallization of epothilone D from Myxococcus xanthus cultures. J Nat Prod 65:570–572

    Article  CAS  Google Scholar 

  2. Breitbach M, Bathen D, Schmidt-Traub H, Ebener H (2002) Stability of adsorber resins under mechanical compression and ultrasonication. Polym Adv Technol 13:391–400

    Article  CAS  Google Scholar 

  3. Cherry RS, Papoutsakis ET (1986) Hydrodynamic effects on cells in agitated tissue culture reactors. Bioprocess Eng 1:29–41

    Article  Google Scholar 

  4. Cherry RS, Papoutsakis ET (1988) Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol Bioeng 32:1001–1014

    Article  Google Scholar 

  5. Cherry RS, Papoutsakis ET (1989) Growth and death rates of bovine embryonic kidney cells in turbulent microcarrier bioreactors. Bioprocess Eng 4:81–89

    Article  Google Scholar 

  6. Chou TC, Zhang XG, Balog A, Su DS, Meng D, Savin K, Bertino JR, Danishefsky SJ (1998) Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc Natl Acad Sci USA 95:9642-9647

    Article  CAS  Google Scholar 

  7. Gerth K, Washausen P, Höfle G, Irschik H, Reichenbach H (1996a) The jerangolids: a family of new antifungal compounds from Sorangium cellulosum (myxobacteria). Production, physico-chemical and biological properties of jerangolid A. J Antibiot 49:71–75

    CAS  Google Scholar 

  8. Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996b) Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria)—production, physico-chemical, and biological properties. J Antibiot 49:560-563

    CAS  Google Scholar 

  9. Gerth K, Steinmetz H, Höfle G, Reichenbach H (2002) Studies on the biosynthesis of epothilones: hydroxylation of epo A and B to epothilones E and F. J Antibiot 55:41–45

    CAS  Google Scholar 

  10. Jumaa M, Carlson B, Chimilio L, Silchenko S, Stella V (2004) Kinetics and mechanism of degradation of Epothilone-D: an experimental anticancer agent. J Pharm Sci 93:2953–2961

    Article  CAS  Google Scholar 

  11. Julien B, Shah S (2002) Heterologous expression of the epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob Agents Chemother 46:2772–2778

    Article  CAS  Google Scholar 

  12. Jüsten P, Paul GC, Niewnow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52:672–684

    Article  Google Scholar 

  13. Kolmogorov DN (1941) C.R. (Doklady) Acad Sci USSR 30:301–305

    Google Scholar 

  14. Lau J, Frykman S, Regentin R, Ou S, Tsuruta H, Licari P (2002) Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol Bioeng 78:280-288

    Article  CAS  Google Scholar 

  15. Marshall VP, McWethy SJ, Sirotti JM, Cialdella JI (1990) The effect of neutral resins on the fermentation production of rubradirin. J Ind Microbiol 5:283–288

    Article  CAS  Google Scholar 

  16. Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11:93–98

    Article  CAS  Google Scholar 

  17. Pitchumani R, Meesters GMH, Scarlett B (2003) Breakage behavior of enzyme granules in a repeated impact test. Powder Technol 130:421–427

    Article  CAS  Google Scholar 

  18. Salman AD, Reynolds GK, Mounslow MJ (2003) Particle impact breakage in particulate processing. KONA Powder Particle 21:88–98

    CAS  Google Scholar 

  19. Smith JJ, Lilly MD, Fox RI (1990) The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum. Biotechnol Bioeng 35:1011–1023

    Article  CAS  Google Scholar 

  20. van Suijdam JC, Metz B (1981) Influence of engineering variables upon the morphology of filamentous molds. Biotechnol Bioeng 23:111–148

    Article  Google Scholar 

  21. Warr GA, Veitch JA, Walsh AW, Hesler GA, Pirnik DM, Leet JE, Lin PM, Medina IA, McBrien KD, Forenza S, Clark JM, Lam KS (1996) BMS-182123, a fungal metabolite that inhibits the production of TNF-α by macrophages and monocytes. J Antibiot 49:234–240

    CAS  Google Scholar 

  22. Woo EJ, Starks CM, Carney JR, Arslanian R, Cadapan L, Zavala S, Licari P (2002) Migrastatin and a new compound, isomigrastatin, from Streptomyces platensis. J Antibiot 55:141–146

    CAS  Google Scholar 

  23. Yang SA, Pyle DL (1999) The adsorption kinetics of cephalosporin-C on non-ionic polymeric macropore Amberlite XAD-16 resin. J Chem Technol Biotechnol 74:216–220

    Article  CAS  Google Scholar 

  24. Zhang J, Wang R, Jiang P, Liu Z (2002) Production of an exopolysaccharide bioflocculant by Sorangium cellulosum. Lett Appl Microbiol 34:178–181

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Geoffrey Nosarati for his assistance with the GC/MS analysis of the resin extract samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Frykman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frykman, S., Tsuruta, H., Galazzo, J. et al. Characterization of product capture resin during microbial cultivations. J IND MICROBIOL BIOTECHNOL 33, 445–453 (2006). https://doi.org/10.1007/s10295-006-0088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0088-1

Keywords

Navigation