Skip to main content
Log in

The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production

  • Environmental Biotechnology
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Pseudomonas aeruginosa produces the biosurfactant rhamnolipid, which has several potential biotechnological applications. The synthesis of this surfactant is catalyzed by rhamnosyltransferase 1, composed of the proteins RhlA and RhlB. Here we report that RhlA plays a role not only in surfactant synthesis, but also in the production of polyhydroxyalkanoates, polymers that can be used for the synthesis of biodegradable plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of rhamnose-containing glycolipids by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595–2602

    PubMed  CAS  Google Scholar 

  2. Campos-García J, Caro AD, Nájera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G (1998) The Pseudomonas aeruginosa rhlG gene encodes a NADPH-dependent b-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451

    PubMed  Google Scholar 

  3. Chandrasekaran EV, Bemiller JN (1980) Constituent analyses of glycosaminoglycans. Methods Carbohydr Chem 8:89–96

    CAS  Google Scholar 

  4. Costerton JW (1980) Pseudomonas aeruginosa in nature and disease. In: Sabath CD (ed) Pseudomonas aeruginosa: the organism, diseases it causes and their treatment. Hans Huber, Bern, pp 15–24

    Google Scholar 

  5. Deziel EF, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa 3(3-hydroxyalkanoic acids (HAAs) the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  PubMed  CAS  Google Scholar 

  6. Hancock REW, Carey AM (1979) Outer membrane of Pseudomonas aeruginosa: heat-and 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910

    PubMed  CAS  Google Scholar 

  7. Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  PubMed  CAS  Google Scholar 

  8. Madison II, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates) from DNA to plastics. Microbiol Mol Biol Rev 63:21–53

    PubMed  CAS  Google Scholar 

  9. Maier MR, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  PubMed  CAS  Google Scholar 

  10. Ochsner UA, Fiechter A Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795

    PubMed  CAS  Google Scholar 

  11. Ochsner UA, Reiser J, Fietcher A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous host. Appl Environ Microbiol 61:3503–3506

    CAS  Google Scholar 

  12. Olivera ER, Cenicero D, Jodra R, Minambres B, García B, Abraham GA, Gallardo A, San Román J, García JL, Naharro G, Luengo JM (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618

    Article  PubMed  CAS  Google Scholar 

  13. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718

    Article  PubMed  CAS  Google Scholar 

  14. Rehm BHA, Kruger N, Steinbuchel A (1998) A new metabolic link between fatty acid de novo synthesis and other proteins required for PHA synthesis. J Biol Chem 273:24044–24051

    Article  PubMed  CAS  Google Scholar 

  15. Rehm BHA, Mitsky TA, Steibuchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA and rhamnolipid synthesis by Pseudomonads: Establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109

    Article  PubMed  CAS  Google Scholar 

  16. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    Article  PubMed  CAS  Google Scholar 

  17. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoates acids from gluconate by Pseudomonas aeruginosa and other fluorescent Pseudomonads. Appl Environ Microbiol 56:3360–3367

    CAS  Google Scholar 

  18. Timm A, Steinbüchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoates acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209:15–30

    Article  PubMed  CAS  Google Scholar 

  19. Van Delden C, Iglewski BH (1998) Cell-to cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Miller M (1992) Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was founded in part by the Universidad Nacional Autónoma de México through grant DGAPA PAPIIT IIX201404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Soberón-Chávez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soberón-Chávez, G., Aguirre-Ramírez, M. & Sánchez, R. The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. J IND MICROBIOL BIOTECHNOL 32, 675–677 (2005). https://doi.org/10.1007/s10295-005-0243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0243-0

Keywords

Navigation