Skip to main content
Log in

Identification and disruptional analysis of the Streptomyces cinnamonensis msdA gene, encoding methylmalonic acid semialdehyde dehydrogenase

  • Original Paper - JMBM
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The msdA gene encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is known to be involved in valine catabolism in Streptomyces coelicolor. Using degenerative primers, a homolog of

msdA gene was cloned and sequenced from the monensin producer, Streptomyces cinnamonensis. RT-PCR results showed msdA was expressed in a vegetative culture, bump-seed culture and the early stages of oil-based monensin fermentation. However, isotopic labeling of monensin A by [2, 4-13C2]butyrate revealed that this MSDH does not play a role in providing precursors such as methylmalonyl-CoA for the monensin biosynthesis under these fermentation conditions. Using a PCR-targeting method, msdA was disrupted by insertion of an apramycin resistance gene in S. cinnamonensis C730.1. Fermentation results revealed that the resulting ΔmsdA mutant (CXL1.1) produced comparable levels of monensin to that observed for C730.1. This result is consistent with the hypothesis that butyrate metabolism in S. cinnamonensis in the oil-based fermentation is not mediated by msdA, and that methylmalonyl-CoA is probably produced through direct oxidation of the pro-S methyl group of isobutyryl-CoA. The CXL1.1 mutant and C730.1 were both able to grow in minimal medium with valine or butyrate as the sole carbon source, contrasting previous observations for S. coelicolor which demonstrated msdA is required for growth on valine. In conclusion, loss of the S. cinnamonensis msdA neither affects valine catabolism in a minimal medium, nor butyrate metabolism in an oil-based medium, and its role remains an enigma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MSDH:

Methylmalonic acid semialdehyde dehydrogenase

PKS:

Polyketide synthase

ICM:

Isobutyryl-CoA mutase

CCR:

Crotonyl CoA reductase

PCC:

Propionyl CoA carboxylase

References

  1. Bannerjee D, Sanders EL, Sokatch JR (1970) Properties of purified methylmalonate semialdehyde dehydrogenase of Pseudomonas aeruginosa. J Biol Chem 245:1828–1835

    PubMed  CAS  Google Scholar 

  2. Bramwell H, Hunter IS, Coggins JR, Nimmo HG (1996) Propionyl-CoA carboxylase from Streptomyces coelicolor A3(2): cloning of the gene encoding the biotin-containing subunit. Microbiology 142:649–655

    Article  PubMed  CAS  Google Scholar 

  3. Gani D, O’Hagan D, Reynolds KA, Robinson JA (1985) Biosynthesis of the polyether antibiotic monensin-A: stereochemical aspects of the incorporation and metabolism of isobutyrate. J Chem Soc Chem Commun. 1002

  4. Goodwin GW, Rougraff PM, Davis EJ, Harris RA (1989) Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver. Identity to malonate-semialdehyde dehydrogenase. J Biol Chem 264:14965–14971

    PubMed  CAS  Google Scholar 

  5. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  6. Han L, Reynolds KA (1997) A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol 179:5157–5164

    PubMed  CAS  Google Scholar 

  7. Hopwood DA (1993) Genetic engineering of Streptomyces to create hybrid antibiotics. Curr Opin Biotechnol 4:531–537

    Article  PubMed  CAS  Google Scholar 

  8. Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497

    Article  PubMed  CAS  Google Scholar 

  9. Kamoun P (1992) Valine is a precursor of propionyl-CoA. Trends Biochem Sci 17:175–176

    Article  PubMed  CAS  Google Scholar 

  10. Katz L, Donadio S (1993) Polyketide synthesis: prospects for hybrid antibiotics. Ann Rev Microbiol 47:875–912

    Article  CAS  Google Scholar 

  11. Katz L (1997) Manipulation of modular polyketide synthases. Chem Rev 97:2557–2575

    Article  PubMed  CAS  Google Scholar 

  12. Leiser A, Birch A, Robinson JA (1996) Cloning, sequencing, overexpression in Escherichia coli, and inactivation of the valine dehydrogenase gene in the polyether antibiotic producer Streptomyces cinnamonensis. Gene 177:217–222

    Article  PubMed  CAS  Google Scholar 

  13. Li C, Florova G, Konstatin A, Reynolds KA (2004) Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150:3463–3472

    Article  PubMed  CAS  Google Scholar 

  14. Liu H, Reynolds KA (2001) Precursor supply for polyketide biosynthesis: the role of crotonyl-CoA reductase. Metab Eng 3:40–48

    Article  PubMed  CAS  Google Scholar 

  15. Lounes A, Lebrihi A, Benslimane C, Lefebvre G, Germain P (1995) Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin. Can J Microbiol 41:800–808

    Article  PubMed  CAS  Google Scholar 

  16. O’Hagan D, Rogers SV, Duffin GR, Reynolds KA (1995) The biosynthesis of monensin A: Thymine, b-aminoisobuytyrate and methacrylate metabolism in Streptomyces cinnamonnesis. J Antibiot 45:1280–1287

    Google Scholar 

  17. Omura S, Tsuzuki K, Tanaka Y, Sakakibara H, Aizawa M, Lukacs G (1983) Valine as a precursor of n-butyrate unit in the biosynthesis of macrolide aglycone. J Antibiot (Tokyo) 36:614–616

    CAS  Google Scholar 

  18. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorgansim Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc Natl. Acad. Sci USA 98:12215–12220

    Article  PubMed  CAS  Google Scholar 

  19. Pospisil S, Sedmera P, Havranek M, Krumphanzl V, Vanek Z (1983) Biosynthesis of monensins A and B. J Antibiot (Tokyo) 36:617–619

    CAS  Google Scholar 

  20. Reynolds KA, Robinson JA (1985) Biosynthesis of Monensin. The Intramolecular Rearrangement of Isobutyryl-CoA to n-Butyryl-CoA. J Chem Soc Chem Commun 1831

    Article  Google Scholar 

  21. Reynolds KA, O’Hagan D, Gani D, Robinson JA (1988) Butyrate metabolism in Streptomycetes. Characterization of a vicinal interchange rearrangement linking isobutyrate and butyrate in Streptomyces cinnamonensis. J Chem Soc Perkin Trans I 3195–3207

    Article  Google Scholar 

  22. Rodriguez E, Gramajo H (1999) Genetic and biochemical characterization of the alpha and beta components of a propionyl-CoA carboxylase complex of Streptomyces coelicolor A3(2). Microbiol. 145:3109–3119

    CAS  Google Scholar 

  23. Sherman MM, Yue S, Hutchinson CR (1986) Biosynthesis of lasalocid A. Metabolic interrelationships of carboxylic acid precursors and polyether antibiotics [published erratum appears in J Antibiot 1987 Mar;40(3):following 399]. J Antibiot 39:1135–1143

    Google Scholar 

  24. Stark WM, Knox NG, Westhead JE (1967) Monensin, a new biologically active compound. II. Fermentation studies. Antimicrob Agents Chemother 7:353–358

    CAS  Google Scholar 

  25. Steele MI, Lorenz D, Hatter K, Park A, Sokatch JR (1992) Characterization of the mmsAB operon of Pseudomonas aeruginosa PAO encoding methylmalonate-semialdehyde dehydrogenase and 3-hydroxyisobutyrate dehydrogenase. J Biol Chem 267:13585–13592

    PubMed  CAS  Google Scholar 

  26. Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974

    Article  PubMed  CAS  Google Scholar 

  27. Tang L, Zhang YX, Hutchinson CR (1994) Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. J. Bacteriol. 176:6107–6119

    PubMed  CAS  Google Scholar 

  28. Tang L, Zhang YX, Hutchinson CR (1994) The genetic basis of precursor supply for the biosynthesis of macrolide and polyether antibiotics. Ann N Y Acad Sci. 721:105–106

    Article  PubMed  CAS  Google Scholar 

  29. Vrijbloed JW, Zerbe-Burkhardt K, Ratnatilleke A, Grubelnik-Leiser A, Robinson JA (1999) Insertional inactivation of methylmalonyl coenzyme A (CoA) mutase and isobutyryl-CoA mutase genes in Streptomyces cinnamonensis: influence on polyketide antibiotic biosynthesis. J Bacteriol 181:5600–5605

    PubMed  CAS  Google Scholar 

  30. Zhang W, Reynolds KA (2001) MeaA, a putative coenzyme B(12)-dependent mutase, provides methylmalonyl coenzyme A for monensin biosynthesis in Streptomyces cinnamonensis. J Bacteriol. 183:2071–2080

    Article  PubMed  CAS  Google Scholar 

  31. Zhang YX, Tang L, Hutchinson CR (1996) Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor. J Bacteriol 178:490–495

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (GM 50542) and Eli Lilly and Company. We are grateful to Richard DeMaio and Vic Vinci at Lilly for providing S. cinnamonensis C730.1 and C730.7 as well as conditions for oil-based extended fermentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Akopiants, K. & Reynolds, K.A. Identification and disruptional analysis of the Streptomyces cinnamonensis msdA gene, encoding methylmalonic acid semialdehyde dehydrogenase. J IND MICROBIOL BIOTECHNOL 33, 75–83 (2006). https://doi.org/10.1007/s10295-005-0053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0053-4

Keywords

Navigation