Skip to main content
Log in

Antibacterial effects of knotwood extractives on paper mill bacteria

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Hydrophilic knotwood extracts from 18 wood species were assessed in disc diffusion and liquid culture tests for antibacterial effects against three species of paper mill bacteria. The Pinus sylvestris, P. resinosa, P. contorta, and P. banksiana extracts decreased or inhibited bacterial growth. The susceptibility order was P. sylvestris > P. resinosa > P. contorta > P. banksiana, correlating with the concentrations of pinosylvin and pinosylvin monomethyl ether in these wood species. Also, Pseudotsuga menziesii and Thuja occidentalis extracts had a small inhibitory effect. The Gram-positive Bacillus coagulans was more susceptible to the extracts than the Gram-negative Burkholderia multivorans and Alcaligenes xylosoxydans. The main components in the Pinus knotwood extracts were pinosylvin monomethyl ether and pinosylvin, suggesting these to be the active components. Therefore, pure pinosylvin, pinosylvin monomethyl ether, and dihydro-pinosylvin monomethyl ether were also tested. All compounds showed antibacterial effects. However, higher concentrations were needed for these pure compounds than for the knotwood extracts. Pinosylvin had stronger antibacterial effects than pinosylvin monomethyl ether. This work shows that knotwood extracts, especially from Pinus species, have a potential for use as natural biocides in papermaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holmbom B, Hemming J, Willför S, Reunanen M, Nisula L, Eckerman C (2003) Phenolic bioactive substances in wood and knots of different spruce and fir species. Proc Int Symp Wood Pulp Chem 12:341–344

    Google Scholar 

  2. Pohjamo SP, Hemming JE, Willför SM, Reunanen MHT, Holmbom BR (2003) Phenolic extractives in Salix caprea wood and knots. Phytochemistry 63:165–169

    Article  CAS  PubMed  Google Scholar 

  3. Willför S, Hemming J, Reunanen M, Eckerman C, Holmbom B (2003a) Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung 57:27–36

    Google Scholar 

  4. Willför S, Hemming J, Reunanen M, Holmbom B (2003b) Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 57:359–372

    Google Scholar 

  5. Allison RW, Graham KL (1988) Reject material in kraft pulp from radiata pine. Part 1. Effect of knotwood. Appita 41:197–202

    CAS  Google Scholar 

  6. Sahlberg U (1995) Influence of knot fibers on TMP properties. Tappi J 78:162–168

    CAS  Google Scholar 

  7. Timell TE (1986) Compression wood in gymnosperms, vol 3. Springer, Berlin Heidelberg New York, pp 1872–1874

  8. Eckerman C, Holmbom B (2001) Method for recovery of compression wood and/or normal wood from oversize chips. Patent application PCT/FI01/00691

  9. Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123

    Article  CAS  PubMed  Google Scholar 

  10. Nitta T, Arai T, Takamatsu H, Inatomi Y, Murata H, Iinuma M, Tanaka T, Ito T, Asai F, Ibrahim I, Nakanishi T, Watabe K (2002) Antibacterial activity of extracts prepared from tropical and subtropical plants on methicillin-resistant Staphylococcus aureus. J Health Sci 48:273–276

    Article  CAS  Google Scholar 

  11. Omar S, Lemonnier B, Jones N, Ficker C, Smith ML, Neema C, Towers GHN, Goel K, Arnason JT (2000) Antimicrobial activity of extracts of eastern North American hardwood trees and relation to traditional medicine. J Ethnopharmacol 73:161–170

    Article  CAS  PubMed  Google Scholar 

  12. Rauha J-P, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56:3–12

    Article  CAS  PubMed  Google Scholar 

  13. Xu H-X, Lee SF (2001) Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res 15:39–43

    Article  PubMed  Google Scholar 

  14. Sato M, Fujiwara S, Tsuchiya H, Fujii T, Iinuma M, Tosa H, Ohkawa Y (1996) Flavones with antibacterial activity against cariogenic bacteria. J Ethnopharmacol 54:171–176

    Article  CAS  PubMed  Google Scholar 

  15. Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey K-M (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507

    Article  PubMed  Google Scholar 

  16. Fisher TH, Jin Y, Schultz TP (2001) Fungicidal activity of 3’-substituted-3-stilbenols. Holzforschung 55:568–572

    CAS  Google Scholar 

  17. Harju AM, Venäläinen M, Anttonen S, Viitanen H, Kainulainen P, Saranpää P, Vapaavuori E (2003) Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 17:263–268

    CAS  Google Scholar 

  18. Chang S-T, Wu J-H, Wang S-Y, Kang P-L, Yang N-S, Shyur L-F (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49:3420–3424

    Article  CAS  PubMed  Google Scholar 

  19. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  Google Scholar 

  20. MacRae WD, Towers GHN (1984) Biological activity of lignans. Phytochemistry 23:1207–1220

    Article  CAS  Google Scholar 

  21. Saarinen NM, Wärri A, Mäkelä SI, Eckerman C, Reunanen M, Ahotupa M, Salmi SM, Franke AA, Kangas L, Santti R (2000) Hydroxymatairesinol, a novel enterolactone precursor with antitumor properties from coniferous tree (Picea abies). Nutr Cancer 36:207–216

    Article  CAS  PubMed  Google Scholar 

  22. Savouret JF, Quesne M (2002) Resveratrol and cancer: a review. Biomed Pharmacother 56:84–87

    Article  CAS  PubMed  Google Scholar 

  23. Willför SM, Ahotupa MO, Hemming JE, Reunanen MHT, Eklund PC, Sjöholm RE, Eckerman CSE, Pohjamo SP, Holmbom BR (2003c). Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J Agric Food Chem 51:7600–7606

    Article  PubMed  Google Scholar 

  24. Malterud KE, Bremnes TE, Faegri A, Moe T, Sandanger Dugstad EK, Anthonsen T, Henriksen LM (1985) Flavonoids from the wood of Salix caprea as inhibitors of wood-destroying fungi. J Nat Prod 48:559–563

    CAS  Google Scholar 

  25. Basile A, Sorbo S, Giordano S, Ricciardi L, Ferrara S, Montesano D, Castaldo Cobianchi R, Vuotto ML, Ferrara L (2000) Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71:S110–S116

    Article  CAS  PubMed  Google Scholar 

  26. El-Gammal AA, Mansour RMA (1986) Antimicrobial activities of some flavonoid compounds. Zentralbl Mikrobiol 141:561–565

    CAS  PubMed  Google Scholar 

  27. Ali MA, Debnath DC (1997) Isolation and characterization of antibacterial constituent from devdaru (lignum of Polyalthia longifolia L.). Bangladesh J Sci Ind Res 32:20–24

    CAS  Google Scholar 

  28. Frykholm KO (1945) Bacteriological studies of pinosylvine and its monomethyl and dimethyl ethers, and toxicologic studies of pinosylvine. Nature 155:454–55

    CAS  Google Scholar 

  29. Bois E, Lieutier F, Yart A (1999) Bioassays on Leptographium wingfieldii, a bark beetle associated fungus, with phenolic compounds of Scots pine phloem. Eur J Plant Pathol 105:51–60

    Article  CAS  Google Scholar 

  30. Celimene CC, Micales JA, Ferge L, Young RA (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53:491–497

    Google Scholar 

  31. Celimene CC, Smith DR, Young RA, Stanosz GR (2001) In vitro inhibition of Sphaeropsis sapinea by natural stilbenes. Phytochemistry 56:161–165

    Article  CAS  PubMed  Google Scholar 

  32. Gomes de Saravia SG, Gaylarde CC (1998) The antimicrobial activity of an aqueous extract of Brassica negra. Int Biodeterior Biodegr 41:145–148

    Article  Google Scholar 

  33. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  Google Scholar 

  34. Väisänen OM, Weber A, Bennasar A, Rainey FA, Busse H-J, Salkinoja-Salonen MS (1998) Microbial communities of printing paper machines. J Appl Microbiol 84:1069–1084

    Article  PubMed  Google Scholar 

  35. Kolari M (2003) Attachment mechanisms and properties of bacterial biofilms on non-living surfaces. PhD thesis, , University of Helsinki, Helsinki

  36. Ekman R, Holmbom B (1989) Analysis by gas chromatography of the wood extractives in pulp and water samples from mechanical pulping of spruce. Nord Pulp Pap Res J 4:16–24

    CAS  Google Scholar 

  37. Örså F, Holmbom B (1994) A convenient method for the determination of wood extractives in papermaking process waters and effluents. J Pulp Pap Sci 20:J361-J365

    Google Scholar 

  38. Laver ML, Arvey SW (1996) Chemical brown staining of Douglas-fir wood: light and oxygen susceptibility of extractives. For Prod J 46:96–101

    CAS  Google Scholar 

  39. Grosvenor PW, Supriono A, Gray DO (1995) Medicinal plants from Riau Province, Sumatra, Indonesia. Part 2: antibacterial and antifungal activity. J Ethnopharmacol 45:97–111

    Article  CAS  PubMed  Google Scholar 

  40. Hart JH (1981) Role of phytostilbenes in decay and disease resistance. Annu Rev Phytopathol 19:437–458

    Article  CAS  Google Scholar 

  41. Kolari M, Nuutinen J, Salkinoja-Salonen MS (2001) Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis. J Ind Microbiol Biotechnol 27:343–351

    Google Scholar 

  42. Rudman P (1962) The causes of natural durability in timber. IX. The antifungal activity of heartwood extractives in a wood substrate. Holzforschung 16:74–77

    CAS  Google Scholar 

  43. Rennerfelt E (1945) The influence of the phenolic compounds in the heartwood of Scots pine (Pinus silvestris L.) on the growth of some decay fungi in nutrient solution. Sven Bot Tidskr 39:311–318

    Google Scholar 

  44. Hart JH, Shrimpton DM (1979) Role of stilbenes in resistance of wood to decay. Phytopathology 69:1138–1143

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jarl Hemming for providing the knotwood meals and his help with the GC analysis of the chemical composition of the extracts. Christer Eckerman is acknowledged for the isolation and purification of the stilbenes and Markku Reunanen for his skilful GC-MS work. Financial support was received from the Foundation for Research of Natural Resources in Finland, the Kemira Foundation, the Academy of Finland, and the National Technology Agency of Finland. This work is part of the activities at the Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence Programme (2000–2005) by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Lindberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindberg, L.E., Willför, S.M. & Holmbom, B.R. Antibacterial effects of knotwood extractives on paper mill bacteria. J IND MICROBIOL BIOTECHNOL 31, 137–147 (2004). https://doi.org/10.1007/s10295-004-0132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0132-y

Keywords

Navigation