Skip to main content
Log in

Characterisation of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and 4-(4-chloro-2-methylphenoxy) butyric acid

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The aim of this study was to enrich and characterise bacterial consortia from soils around a herbicide production plant through their capability to degrade the herbicides 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy) butyric acid (MCPB). Partial 16S rRNA gene sequencing revealed members of the genera Stenotrophomonas, Brevundimonas, Pseudomonas, and Ochrobactrum in the 2,4-DB- and MCPB-degrading communities. The degradation of 2,4-DB and MCPB was facilitated by the combined activities of the community members. Some of the members were able to utilise other herbicides from the family of chlorophenoxyalkanoic acids. During degradation of 2,4-DB and MCPB, phenol intermediates were detected, indicating ether cleavage of the side chain as the initial step responsible for the breakdown. This was also verified using an indicator medium. Repeated attempts to amplify putatively conserved tfd genes by PCR indicated the absence of tfd genes among the consortia members. First step cleavage of the chlorophenoxybutyric acid herbicides is by ether cleavage in bacteria and is encoded by divergent or different tfd gene types. The isolation of mixed cultures capable of degrading 2,4-DB and MCPB will aid future investigations to determine both the metabolic route for dissimilation and the fate of these herbicides in natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A–D.

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  2. Daugherty DD, Karel SF (1994) Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1(pRO101) in a dual-substrate chemostat. Appl Environ Microbiol 60:3261–3267

    CAS  PubMed  Google Scholar 

  3. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    CAS  PubMed  Google Scholar 

  4. Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161:85–90

    CAS  PubMed  Google Scholar 

  5. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterisation of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 19:7843–7853

    Google Scholar 

  6. Fukumori F, Hausinger RP (1993) Alcaligenes eutrophus JMP134 '2,4-dichlorophenoxyacetate monoxygenase' is an α-ketoglutarate-dependent dioxygenase. J Bacteriol 175:2083–2086

    CAS  PubMed  Google Scholar 

  7. Gutenmann WH, Loos MA, Alexander M, Lisk DJ (1964) Beta-oxidation of phenoxyalkanoic acids in soil. Soil Sci Soc Am Proc 28:205–207

    CAS  Google Scholar 

  8. Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72

    Article  Google Scholar 

  9. King RJ, Short KA, Seidler RJ (1991) Assay for detection and enumeration of genetically engineered microorganisms which is based on the activity of a deregulated 2,4-dichlorophenoxyacetic monoxygenase. Appl Environ Microbiol 57:1790–1792

    Google Scholar 

  10. Kirkland K, Fryer JD (1972) Degradation of several herbicides in a soil previously treated with MCPA. Weed Res 12:90–95

    CAS  Google Scholar 

  11. Kõiv V, Marits R, Heinaru A (1996) Sequence analysis of the 2,4-dichlorophenol hydroxylase gene tfdB and 3,5-dichlorocatechol 1,2-dioxygenase gene tfdC of 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011. Gene 174:293–297

    Article  PubMed  Google Scholar 

  12. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester

  13. Leveau JHJ, Zehnder AJB, Van der Meer JR (1998) The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180:2237–2243

    CAS  PubMed  Google Scholar 

  14. Mertingk H, Müller RH, Babel W (1998) Etherolytic cleavage of 4-(2,4-dichlorophenoxy)butyric acid by species of Rhodococcus and Aureobacterium isolated from an alkaline environment. J Basic Microbiol 38:257–267

    Article  CAS  PubMed  Google Scholar 

  15. Müller RH, Jorks S, Kleinsteuber S, Babel W (1999) Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol Res 145:241–246

    Google Scholar 

  16. Neilson A (1990) A review: the biodegradation of halogenated organic compounds. J Appl Bacteriol 69:445–470

    Google Scholar 

  17. Oh KH, Tuovinen OH (1990) Degradation of 2,4-dichlorophenoxyacetic acid by mixed cultures of bacteria. J Ind Microbiol 6:275–278

    CAS  Google Scholar 

  18. Pieper DH, Reineke W, Engesser KH, Knackmuss HJ (1988). Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP134. Arch Microbiol 150:95–102

    CAS  Google Scholar 

  19. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  20. Slater JH, Bull AT, Hardman DJ (1995) Microbial dehalogenation. Biodegradation 6:181–189

    CAS  Google Scholar 

  21. Smejkal CW, Vallaeys T, Seymour FA, Burton SK, Lappin-Scott HM (2001a) Characterisation of (R/S)-mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid] degrading Alcaligenes sp. CS1 and Ralstonia sp. CS2 isolated from agricultural soils. Environ Microbiol 3:288–293

    Article  CAS  PubMed  Google Scholar 

  22. Smejkal CW, Vallaeys T, Burton SK, Lappin-Scott HM (2001b) Substrate specificity of chlorophenoxyalkanoic acid degrading bacteria is not dependent upon phylogenetically related tfdA gene types. Biol Fertil Soils 33:507–513

    Article  CAS  Google Scholar 

  23. Smejkal CW, Vallaeys T, Burton SK, Lappin-Scott HM (2001c) A rapid method to screen degradation ability in chlorophenoxyalkanoic acid herbicide-degrading bacteria. Lett Appl Microbiol 32:273–277

    Article  CAS  PubMed  Google Scholar 

  24. Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods), ver 4. Sinauer Associates, Sunderland, Mass.

  25. Tett VA, Willetts AJ, Lappin-Scott HM (1994) Enantioselective degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid] by mixed and pure bacterial cultures. FEMS Microbiol Ecol 14:191–200

    CAS  Google Scholar 

  26. Tett VA, Willetts AJ, Lappin-Scott HM (1997) Biodegradation of the chlorophenoxy herbicide (R)-(+)-mecoprop by Alcaligenes denitrificans. Biodegradation 8:43–52

    Article  CAS  Google Scholar 

  27. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  28. Vallaeys T, Fulthorpe RR, Wright AJ, Soulas G (1996) The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol Ecol 20:163–172

    Article  CAS  Google Scholar 

  29. Vallaeys T, Albino L, Soulas G, Wright AD, Weightman AJ (1998) Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus using chemostat culture. Biotechnol Letts 20:1073–1076

    Article  CAS  Google Scholar 

  30. Vallaeys T, Courde L, McGowan C, Wright AD, Fulthorpe RR (1999) Phylogenetic analyses indicate independent recruitment of diverse gene cassettes during assemblage of the 2,4-D catabolic pathway. FEMS Microbiol Ecol 28:373–382

    Article  CAS  Google Scholar 

  31. Zipper C, Nickel K, Angst W, KohlerH-PE (1996) Complete microbial degradation of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. Nov. Appl Environ Microbiol 62:4318–4322

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.H. Marks (Bradford, UK) and the Environmental Research group at the University of Exeter for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Lappin-Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smejkal, C.W., Seymour, F.A., Burton, S.K. et al. Characterisation of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and 4-(4-chloro-2-methylphenoxy) butyric acid. J IND MICROBIOL BIOTECHNOL 30, 561–567 (2003). https://doi.org/10.1007/s10295-003-0086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0086-5

Keywords

Navigation