Skip to main content
Log in

Polyketide-nonribosomal peptide epothilone antitumor agents: the EpoA, B, C subunits

  • Review Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The epothilones are a family of macrolactone natural products from the myxobacterial species Sorangium cellulosum. Similar to taxol, they are of current clinical interest as anticancer agents. Sequence analysis of the epothilone gene cluster allowed the identification of polyketide synthase and nonribosomal peptide synthetase modules involved in catalyzing epothilone biosynthesis. Given this information, it has been possible to test the predicted functions of several modules to date. EpoA ACP, EpoB, and EpoC have been overproduced in Escherichia coli, allowing in vitro reconstitution of the EpoA/B/C interface and production of the expected epothilone precursor. Further experiments probed the tolerance of EpoB and EpoC for unnatural substrates. These studies of the first three modules of the epothilone biosynthetic cluster suggest that combinatorial biosynthesis may lead to the production of a variety of epothilone analogs that incorporate diversity into the heterocycle starter unit. Additional efforts with the remaining modules, coupled with increased understanding of the macrocyclizing thioesterase domain, may lead to the production of epothilone variants with improved clinical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Bisang C, Long PF, Cortes J, Westcott J, Crosby J, Matharu AL, Cox RJ, Simpson TJ, Staunton J, Leadlay PF (1999) A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401:502–505

    Article  CAS  PubMed  Google Scholar 

  2. Bode CJ, Gupta ML, Reiff EA, Suprenant KA, Georg GI, Himes RH (2002) Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules. Biochemistry 41:3870–3874

    Article  CAS  PubMed  Google Scholar 

  3. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a Taxol-like mechanism of action. Cancer Res 55:2325–2333

    CAS  PubMed  Google Scholar 

  4. Cane DE, Walsh CT (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol 6: R319–R325

    CAS  PubMed  Google Scholar 

  5. Chen HW, O'Connor S, Cane DE, Walsh CT (2001) Epothilone biosynthesis: Assembly of the methylthiazolylcarboxy starter unit on the EpoB subunit. Chem Biol 8:899–912

    Article  CAS  PubMed  Google Scholar 

  6. Frykman S, Tsuruta H, Lau J, Regentin R, Ou S, Reeves C, Carney J, Santi D, Licari P (2002) Modulation of epothilone analog production through media design. J Ind Microbiol Biot 28:17–20

    Article  CAS  Google Scholar 

  7. Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H (1996) Epothilons a and b: Antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria)—production, physico- chemical and biological properties. J Antibiot 49:560–563

    CAS  PubMed  Google Scholar 

  8. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: Molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci U S A 97:2904–2909

    Article  CAS  PubMed  Google Scholar 

  9. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JTM, Fojo T, Porunchynsky MS (1997) Paclitaxel-resistant human ovary cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272:17118–17125

    PubMed  Google Scholar 

  10. Hardt IH, Steinmetz H, Gerth K, Sasse F, Reichenbach H, Hofle G (2001) New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13: Isolation, structure elucidation, and SAR studies. J Nat Prod 64:847–856

    Article  CAS  PubMed  Google Scholar 

  11. Harris CR, Danishefsky SJ (1999) Complex target-oriented synthesis in the drug discovery process: a case history in the dEpoB series. J Org Chem 64:8434–8456

    Article  CAS  Google Scholar 

  12. Hofle G, Bedorf N, Gerth K, Reichenbach H (1993) German patent DE 4138042

  13. Julien B, Shah S, Ziermann R, Goldman R, Katz L, Khosla C (2000) Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 249:153–160

    Article  CAS  PubMed  Google Scholar 

  14. Keating TA, Walsh CT (1999) Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 3:598–606

    CAS  PubMed  Google Scholar 

  15. Konz D, Marahiel MA (1999) How do peptide synthetases generate structural diversity? Chem Biol 6: R39-R48

  16. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol 3:923–936

    CAS  PubMed  Google Scholar 

  17. Lee FYF, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7:1429–1437

    CAS  PubMed  Google Scholar 

  18. Li YM, Milne JC, Madison LL, Kolter R, Walsh CT (1996) From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274:1188–1193

    Article  CAS  PubMed  Google Scholar 

  19. Miller DA, Walsh CT, Luo LS (2001) C-methyltransferase and cyclization domain activity at the intraprotein PK/NRP switch point of yersiniabactin synthetase. J Am Chem Soc 123:8434–8435

    Article  CAS  PubMed  Google Scholar 

  20. Molnar I, Schupp T, Ono M, Zirkle RE, Milnamow M, Nowak-Thompson B, Engel N, Toupet C, Stratmann A, Cyr DD, Gorlach J, Mayo JM, Hu A, Goff S, Schmid J, Ligon JM (2000) The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem Biol 7:97–109

    CAS  PubMed  Google Scholar 

  21. O'Connor SE, Chen HW, Walsh CT (2002) Enzymatic assembly of epothilones: the EpoC subunit and reconstitution of the EpoA-ACP/B/C polyketide and nonribosomal peptide interfaces. Biochemistry 41:5685–5694

    Article  CAS  PubMed  Google Scholar 

  22. Roy RS, Gehring AM, Milne JC, Belshaw PJ, Walsh CT (1999) Thiazole and oxazole peptides: biosynthesis and molecular machinery. Nat Prod Rep 16:249–263

    Article  CAS  PubMed  Google Scholar 

  23. Schneider TL, Walsh CT, O'Connor SE (2002) Utilization of alternate substrates by the first three modules of the epothilone synthetase assembly line. J Am Chem Soc 124:11272–11273

    Article  CAS  PubMed  Google Scholar 

  24. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    CAS  PubMed  Google Scholar 

  25. Tang L, Shah S, Chung L, J Carney, Katz L, Khosla C, Julien B (2000) Cloning, heterologous expression of the epothilone gene cluster. Science 287:640–642

    CAS  PubMed  Google Scholar 

  26. Walsh CT, Gehring AM, Weinreb PH, Quadri LE, Flugel RS (1997) Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol 1:309–315

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, C.T., O'Connor, S.E. & Schneider, T.L. Polyketide-nonribosomal peptide epothilone antitumor agents: the EpoA, B, C subunits. J IND MICROBIOL BIOTECHNOL 30, 448–455 (2003). https://doi.org/10.1007/s10295-003-0044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0044-2

Keywords

Navigation