Skip to main content
Log in

Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The focus of this study is on proper modeling of the dynamics for inter-system biases (ISBs) in multi-constellation Global Navigation Satellite System (GNSS) precise point positioning (PPP) processing. First, the theoretical derivation demonstrates that the ISBs originate from not only the receiver-dependent hardware delay differences among different GNSSs but also the receiver-independent time differences caused by the different clock datum constraints among different GNSS satellite clock products. Afterward, a comprehensive evaluation of the influence of ISB stochastic modeling on undifferenced and uncombined PPP performance is conducted, i.e., random constant, random walk process, and white noise process are considered. We use data based on a 1-month period (September 2017) Multi-GNSS Experiment (MGEX) precise orbit and clock products from four analysis centers (CODE, GFZ, CNES, and WHU) and 160 MGEX tracking stations. The results demonstrate that generally, the positioning performance of PPP in terms of convergence time and positioning accuracy with the final products from CODE, CNES, and WHU is comparable among the three ISB handling schemes. However, estimating ISBs as random walk process or white noise process outperforms that as the random constant when using the GFZ products. These results indicate that the traditional estimation of ISBs as the random constant may not always be reasonable in multi-GNSS PPP processing. To achieve more reliable positioning results, it is highly recommended to consider the ISBs as random walk process or white noise process in multi-GNSS PPP processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bock H, Dach R, Jaggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geod 83(11):1083–1094

    Article  Google Scholar 

  • Chen J, Zhang Y, Wang J, Yang S, Dong D, Wang J, Qu W, Wu B (2015) A simplified and unified model of multi-GNSS precise point positioning. Adv Space Res 55(1):125–134

    Article  Google Scholar 

  • de Bakker PF, Tiberius CCJM (2017) Real-time multi-GNSS single-frequency precise point positioning. GPS Solut 21(4):1791–1803

    Article  Google Scholar 

  • Gao W, Meng X, Gao C, Pan S, Wang D (2018) Combined GPS and BDS for single-frequency continuous RTK positioning through real-time estimation of differential inter-system biases. GPS Solut 22:20. https://doi.org/10.1007/s10291-017-0687-5

    Article  Google Scholar 

  • Geng J, Bock Y (2016) GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution. J Geod 90(4):379–396

    Article  Google Scholar 

  • Guo F, Zhang X, Wang J, Ren X (2016a) Modeling and assessment of triple-frequency BDS precise point positioning. J Geod 90(11):1223–1235

    Article  Google Scholar 

  • Guo J, Xu X, Zhao Q, Liu J (2016b) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation and comparison. J Geod 90(2):143–159

    Article  Google Scholar 

  • Guo F, Li X, Zhang X, Wang J (2017) Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut 21(1):279–290

    Article  Google Scholar 

  • Guo J, Li X, Li Z, Hu L, Yang G, Zhao C, Fairbairn D, Watson D, Ge M (2018) Multi-GNSS precise point positioning for precision agriculture. Precis Agric 19(5):895–911

    Article  Google Scholar 

  • Han S, Kwon J, Jekeli C (2001) Accurate absolute GPS positioning through satellite clock offset error estimation. J Geod 75(1):33–43

    Article  Google Scholar 

  • Jiang N, Xu Y, Xu T, Xu G, Sun Z, Schuh H (2017) GPS/BDS short-term ISB modelling and prediction. GPS Solut 21(1):163–175

    Article  Google Scholar 

  • Khodabandeh A, Teunissen PJG (2016) PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK. J Geod 90(9):837–851

    Article  Google Scholar 

  • Kouba J (2015) A guide to using international GNSS service (IGS) products, September 2015 update. http://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products. Accessed 30 Mar 2019

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Li P, Zhang X (2014) Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solut 18(3):461–471

    Article  Google Scholar 

  • Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635

    Article  Google Scholar 

  • Li P, Zhang X, Guo F (2017) Ambiguity resolved precise point positioning with GPS and BeiDou. J Geod 91(1):25–40

    Article  Google Scholar 

  • Li P, Zhang X, Ge M, Schuh H (2018) Three-frequency BDS precise point positioning ambiguity resolution based on raw observables. J Geod 92(12):1357–1369

    Article  Google Scholar 

  • Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609

    Google Scholar 

  • Liu T, Yuan Y, Zhang B, Wang N, Tan B, Chen Y (2017) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geod 91(3):253–268

    Article  Google Scholar 

  • Lou Y, Zheng F, Gu S, Wang C, Guo H, Feng Y (2016) Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut 20(4):849–862

    Article  Google Scholar 

  • Lu C, Li X, Cheng J, Dick G, Ge M, Wickert J, Schuh H (2018) Real-time tropospheric delay retrieval from multi-GNSS PPP ambiguity resolution: validation with final troposphere products and a numerical weather model. Remote Sens 10(3):481. https://doi.org/10.3390/rs10030481

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F, Romero I, Noll C, Stürze A, Weber G, Schmid R, Macleod K, Schaer S (2017) The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—achievements, prospects and challenges. Adv Space Res 59(7):1671–1697

    Article  Google Scholar 

  • Odijk D, Teunissen PJG (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut 17(4):521–533

    Article  Google Scholar 

  • Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJG (2016) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geod 90(1):15–44

    Article  Google Scholar 

  • Prange L, Orliac E, Dach R, Arnold D, Beutler G, Schaer S, Jäggi A (2017) CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J Geod 91(4):345–360

    Article  Google Scholar 

  • Rebischung P, Schmid R (2016) IGS14/igs14.atx: a new framework for the IGS products. AGU Fall Meeting, San Francisco, CA

  • Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geod 87(6):515–525

    Article  Google Scholar 

  • Wanninger L, Beer S (2015) BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solut 19(4):639–648

    Article  Google Scholar 

  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans AGU 94(45):409–410

    Article  Google Scholar 

  • Xiang Y, Gao Y, Shi J, Xu C (2017) Carrier phase-based ionospheric observables using PPP models. Geod Geodyn 8(1):17–23

    Article  Google Scholar 

  • Zeng A, Yang Y, Ming F, Jing Y (2017) BDS–GPS inter-system bias of code observation and its preliminary analysis. GPS Solut 21(4):1573–1581

    Article  Google Scholar 

  • Zhou F, Dong D, Ge M, Li P, Wickert J, Schuh H (2018a) Simultaneous estimation of GLONASS pseudorange inter-frequency biases in precise point positioning using undifferenced and uncombined observations. GPS Solut 22:19. https://doi.org/10.1007/s10291-017-0685-7

    Article  Google Scholar 

  • Zhou F, Dong D, Li W, Jiang X, Wickert J, Schuh H (2018b) GAMP: an open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut 22:33. https://doi.org/10.1007/s10291-018-0699-9

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the IGS Multi-GNSS Experiment (MGEX) for providing multi-GNSS ground tracking data, DCBs, precise orbit and clock products. The figures were generated using the public domain GMT software (Wessel et al. 2013). This work is sponsored by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2017RCJJ074) and the National Natural Science Foundation of China (No. 41771475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Dong, D., Li, P. et al. Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solut 23, 59 (2019). https://doi.org/10.1007/s10291-019-0852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0852-0

Keywords

Navigation