Skip to main content
Log in

Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The rapid development of the BeiDou Satellite Navigation System (BDS) and other Global Navigation Satellite System (multi-GNSS) constellations provides a great opportunity to contribute to earthquake early warning systems in terms of capturing displacement and velocity waveforms for the estimation of magnitude and fault slip inversion. In this study, we demonstrate the capability of BDS and the benefit of multi-GNSS for real-time capturing seismic waveforms using the combined high-rate BDS + GPS + GLONASS data collected during the 2017 Mw 6.5 Jiuzhaigou earthquake. For this event, we found that the displacements, derived from BDS precise point positioning (PPP) are better than that of Global Positioning System-only (GPS) results, especially in the east and vertical components with improvements of 43% and 23%. While the velocity waveforms from BDS present a comparable performance with GPS. the multi-GNSS fusion can significantly improve the accuracy by 47%, 55%, and 28% in the east, north, and vertical components compared with GPS-only results. The BDS and multi-GNSS derived displacement waveforms agree quite well with those obtained from integrating the acceleration, with accuracy at the millimeter level. In addition, the theoretical permanent displacement field calculated from a finite-fault slip model is selected as an independent reference, and the differences between GNSS derived permanent displacements and theoretical permanent displacements are mostly less than 1 mm. Therefore, we conclude that the BDS and multi-GNSS fusion can significantly contribute to the real-time capture of accurate seismic waveforms and that it has the potential to benefit for earthquake early warning and rapid geohazard assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen R, Alon Z (2011) Application of real-time GPS to earthquake early warning. Geophys Res Lett 38(16):L16310

    Article  Google Scholar 

  • Allen R, Kanamori H (2003) The potential for earthquake early warning in Southern California. Science 300(5620):786–789

    Article  Google Scholar 

  • Avallone A, Marzario M, Cirella A, Piatanesi A, Rovelli A, Alessandro CD, D’Anastasio E, D’Agostino N, Giuliani R, Mattone M (2011) Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: the case of the Mw 6.3 L’Aquila (central Italy) event. J Geophys Res 116(B2):B02305

    Article  Google Scholar 

  • Benedetti E, Branzanti M, Biagi L, Colosimo G, Mazzoni A, Crespi M (2014) Global navigation satellite systems seismology for the 2012 Mw 6.1 Emilia earthquake: exploiting the VADASE algorithm. Seismol Res Lett 85(3):649–656

    Article  Google Scholar 

  • Bock Y, Nikolaidis R, de Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the global positioning system. J Geophys Res 105(B12):28233–28253

    Article  Google Scholar 

  • Bock Y, Prawirodirdjo K, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31(6):L06604

    Article  Google Scholar 

  • Bock Y, Melgar D, Crowell BW (2011) Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bull Seismol Soc Am 101(6):2904–2925

    Article  Google Scholar 

  • Boore DM (2001) Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am 91(5):1199–1211

    Article  Google Scholar 

  • Cai C, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut 17(2):223–236

    Article  Google Scholar 

  • Chen K, Ge M, Babeyko A, Li X, Diao F, Tu R (2016) Retrieving real-time co-seismic displacements using GPS/GLONASS: a preliminary report from the September 2015 Mw 8.3 Illapel earthquake in Chile. Geophys J Int 206(2):941–953

    Article  Google Scholar 

  • Collins P, Henton J, Mireault Y, Heroux P, Schmidt M, Dragert H, Bisnath S (2009) Precise point positioning for real-time determination of co-seismic crustal motion. In: Proceedings of the ION GNSS 2009, Institute of Navigation, Savannah, 22–25 September 2009, pp 2479–2488

  • Colombelli S, Allen RM, Zollo A (2013) Application of real-time GPS to earthquake early warning in subduction and strike-slip environments. J Geophys Res Solid Earth 118(7):3448–3461

    Article  Google Scholar 

  • Colosimo G, Crespi M, Mazzoni A (2011) Real-time GPS seismology with a stand-alone receiver: a preliminary feasibility demonstration. J Geophys Res 116(B11302):2156–2202

    Google Scholar 

  • Crowell BW, Bock Y, Squibb MB (2009) Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks. Seism Res Lett 80(5):772–782

    Article  Google Scholar 

  • Crowell BW, Bock Y, Melgar D (2012) Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys Res Lett 39(9):L09305

    Article  Google Scholar 

  • Crowell BW, Melgar D, Bock Y, Haase JS, Geng J (2013) Earthquake magnitude scaling using seismogeodetic data. Geophys Res Lett 40(23):6089–6094

    Article  Google Scholar 

  • Dreger D, Kaverina A (2000) Seismic remote sensing for the earthquake source process and near-source strong shaking: a case study of the October 16, 1999 Hector Mine earthquake. Geophys Res Lett 27(13):1941–1944

    Article  Google Scholar 

  • Ge M, Dousa J, Li X, Ramatschi M, Wickert J (2011) A novel realtime precise positioning service system: global precise point positioning with regional augmentation. In: Proceedings of the 3rd international colloquium—Galileo science, 31 Aug–2 Sep 2011, Copenhagen

  • Geng T, Xie X, Fang R, Su X, Zhao Q, Liu G (2016) Real-time capture of seismic waves using high-rate multi-GNSS observations: application to the 2015 mw 7.8 Nepal earthquake. Geophys Res Lett 43(1):161–167

    Article  Google Scholar 

  • Geng J, Jiang P, Liu J (2017) Integrating GPS with GLONASS for high-rate seismogeodesy. Geophys Res Lett 44(7):3139–3146

    Article  Google Scholar 

  • Geng J, Pan Y, Li X, Guo J, Liu J, Chen X, Zhang Y (2018) Noise characteristics of high-rate multi-GNSS for subdaily crustal deformation monitoring. J Geophys Res: Solid Earth 123(2):1987–2002

    Article  Google Scholar 

  • Guo F, Li X, Zhang X, Wang J (2016) Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS multi-GNSS experiment (MGEX). GPS Solut 21(1):279–290

    Article  Google Scholar 

  • Kanamori H (2007) Real-time earthquake damage mitigation measures. In: Gasparini P, Manfredi G, Zschau J (eds) Earthquake early warning systems. Springer, Berlin, pp 1–8 (ISBN-13 978-3-540-72240-34)

    Google Scholar 

  • Kawamoto S, Hiyama Y, Ohta Y, Nishimura T (2016) First result from the geonet real-time analysis system (regard): the case of the 2016 Kumamoto earthquakes. Earth Planets Space 68:190

    Article  Google Scholar 

  • Kouba J (2003) Measuring seismic waves induced by large earthquakes with GPS. Stud Geophys Geod 47(4):741–755

    Article  Google Scholar 

  • Kouba J (2009) A guide to using international GNSS service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

  • Larson K, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300(5624):1421–1424

    Article  Google Scholar 

  • Li X, Ge M, Guo B, Wickert J, Schuh H (2013a) Temporal point positioning approach for real-time GNSS seismology using a single receiver. Geophys Res Lett 40(21):5677–5682

    Article  Google Scholar 

  • Li X, Ge M, Zhang X, Zhang Y, Guo B, Wang R, Klotz J, Wickert J (2013b) Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: application to earthquake early warning. Geophys Res Lett 40(2):295–300

    Article  Google Scholar 

  • Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635

    Article  Google Scholar 

  • Malys S, Jensen P (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophys Res Lett 17(5):651–654

    Article  Google Scholar 

  • Melgar D, Crowell BW, Geng J, Allen RM, Bock Y, Riquelme S, Hill EM, Protti M, Ganas A (2015) Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophys Res Lett 42(13):5197–5205

    Article  Google Scholar 

  • Msaewe HA, Hancock CM, Psimoulis PA, Roberts GW, Bonenberg L, Ligt HD (2017) Investigating multi-GNSS performance in the UK and China based on a zero-baseline measurement approach. Measurement 102:186–199

    Article  Google Scholar 

  • Ohta Y, Kobayashi T, Tsushima H, Miura S, Hino R, Takasu T, Fujimoto H, Iinuma T, Tachibana K, Demachi T (2012) Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0). J Geophys Res 117(B2):2156–2202

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Psimoulis PA, Houlie N, Meindl M, Rothacher M (2015) Consistency of PPP GPS and strong-motion records: case study of Mw 9.0 Tohoku-Oki 2011 earthquake. Smart Struct Syst 16(2):347–366

    Article  Google Scholar 

  • Psimoulis PA, Houlié N, Habboub M, Michel C, Rothacher M (2018a) Detection of ground motions using high-rate GPS time-series. Geophys J Int 214:1237–1251

    Article  Google Scholar 

  • Psimoulis PA, Houlié N, Behr Y (2018b) Real-time magnitude characterization of large earthquakes using the predominant period derived from 1 Hz GPS data. Geophys Res Lett 45:517–526

    Article  Google Scholar 

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction—Part II. Refraction corrections in satellite geodesy. Bull Géod 47(1):13–34

    Article  Google Scholar 

  • Wang R, Schurr B, Milkereit C, Shao Z, Jin M (2011) An improved automatic scheme for empirical baseline correction of digital strongmotion records. Bull Seismol Soc Am 101(5):2029–2044

    Article  Google Scholar 

  • Xu P, Shi C, Fang R, Liu J, Niu X, Zhang Q, Yanagidani T (2013) High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. J Geod 87(4):361–372

    Article  Google Scholar 

  • Yang Y, Li J, Wang A, Xu J, He H, Guo H, Shen J, Dai X (2014) Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci China Earth Sci 57(1):144–152

    Article  Google Scholar 

  • Zheng X, Zheng Y, Wang R (2017) Estimating the rupture process of the 8 August 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method. Chinese J Geophys 60(11):4421–4430

    Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to MGEX (http://mgex.igs.org/IGS_MGEX_Data.php), CMONOC (http://www.cmonoc.cn), and BDGBAS (http://www.scbsm.gov.cn/) for providing multi-GNSS data. This work is funded by the China Scholarship Council (CSC, file 201706270123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, K., Li, X. et al. Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China. GPS Solut 23, 17 (2019). https://doi.org/10.1007/s10291-018-0808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0808-9

Keywords

Navigation