Skip to main content
Log in

Improving performance of GPS satellite DCB estimation for regional GPS networks using long-term stability

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Compensation for differential code bias (DCB) is necessary because it is the major source of errors in total electron content (TEC) measurements. The DCB estimation performance is degraded when only the regional GPS network is used. Because DCB estimation is highly correlated with ionospheric modeling, this degradation is particularly evident for measurements concentrated in an area of high TEC concentration. This study proposes a DCB estimation method that uses the long-term stability of the DCB to improve the estimation performance of the regional GPS network. We estimate satellite DCBs by assuming their constancy over seven months. This extended period increases the number of measurements used in DCB estimation and changes the local time distribution of collected measurements. As a result, the unbalanced distribution of specific ionospheric conditions disappears. Tests are performed using both global and regional networks, and the estimation performance is evaluated based on the position error and pseudorange residuals. First, the difference between the global and regional networks when using the conventional method is analyzed. Second, proposed methods are applied to regional networks. The proposed method can improve the DCB estimation performance, and the results are similar to those obtained using one-day global network data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Arikan F, Nayir H, Sezen U, Arikan O (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci. https://doi.org/10.1029/2007rs003785

    Google Scholar 

  • Chao (1997) Real time implementation of the wide area augmentation system for the global positioning system with an emphasis on ionospheric modeling. Ph.D. dissertation, Stanford University, Stanford

  • Choi BK, Cho JH, Lee SJ (2011) Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula. Adv Space Res 47(9):1590–1599. https://doi.org/10.1016/j.asr.2010.12.021

    Article  Google Scholar 

  • Durmaz M, Karslioglu MO (2015) Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS). J Geodesy 89(4):347–360. https://doi.org/10.1007/s00190-014-0779-8

    Article  Google Scholar 

  • Feltens J, Schaer S (1998) IGS products for the ionosphere, In: Proceedings of IGS 1998 analysis center workshop, ESOC, Darmstadt, Germany, February 9–11, pp 225–232

  • Gao Y, Petit G, Schaer S (2008) Session on calibration and future receiver developments, Part I: Calibration. In: IGS workshop 2008, June 2–6, Miami Beach, Florida, USA

  • Hauschild A (2015a) Correlator- and Front-end-dependency of GNSS pseudorange biases for geodetic receivers. IGS workshop 2015, November 5–6, Bern, Switzerland

  • Hauschild A (2015b) The effect of correlator and front-end design on GNSS pseudorange biases for geodetic receivers. In: Proceeding of ION GNSS + 2015, Institute of Navigation, Tampa, Florida, USA, September 14–18, 2015, pp 2835–2844

  • Hauschild A, Montenbruck O (2016) A study on the dependency of GNSS pseudorange biases on correlator spacing Gps. Solutions 20(2):159–171. https://doi.org/10.1007/s10291-014-0426-0

    Article  Google Scholar 

  • Jin R, Jin S, Feng G (2012) M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut 16(4):541–548. https://doi.org/10.1007/s10291-012-0279-3

    Article  Google Scholar 

  • Kao S, Tu Y, Chen W, Weng DJ, Ji SY (2013) Factors affecting the estimation of GPS receiver instrumental biases. Surv Rev 45(328):59–67. https://doi.org/10.1179/1752270612y.0000000022

    Article  Google Scholar 

  • Kao S, Chen Y, Ning F (2014) A MARS-based method for estimating regional 2-D ionospheric VTEC and receiver differential code bias. Adv Space Res 53(2):190–200. https://doi.org/10.1016/j.asr.2013.11.001

    Article  Google Scholar 

  • Kee C, Walter T, Enge P, Parkinson B (1997) Quality control algorithms on WAAS wide-area reference stations. Navigation 44(1):53–62

    Article  Google Scholar 

  • Kouba J (2009) A guide to using International GNSS Service (IGS) products. International GNSS Service (IGS), https://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf. Accessed 10 Nov 2016

  • Li LX, Zhang DH, Zhang SR, Coster AJ, Hao YQ, Xiao Z (2015) Influences of the day-night differences of ionospheric variability on the estimation of GPS differential code bias. Radio Sci 50(4):339–353. https://doi.org/10.1002/2014RS005565

    Article  Google Scholar 

  • Ma G, Maruyama T (2003) Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21(10):2083–2093

    Article  Google Scholar 

  • Ma GY, Gao W, Li JH, Chen YH, Shen H (2014) Estimation of GPS instrumental biases from small scale network. Adv Space Res 54(5):871–882. https://doi.org/10.1016/j.asr.2013.01.008

    Article  Google Scholar 

  • Mannucci A, Iijima B, Lindqwister U, Pi X, Sparks L, Wilson B (1999) GPS and ionosphere. In: Stone WR (ed) Review of radio science 1996–1999. Oxford University Press, Oxford, pp 625–665

    Google Scholar 

  • Rui T, Qin Z, Guanwen H, Hong Z (2011) On ionosphere-delay processing methods for single-frequency precise-point positioning. Geod Geodyn 2(1):71–76

    Article  Google Scholar 

  • Sardon E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910. https://doi.org/10.1029/97rs01457

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron-content from global positioning system observations. Radio Sci 29(3):577–586. https://doi.org/10.1029/94rs00449

    Article  Google Scholar 

  • Schaer S, Beutler G, Mervart L, Rothacher M (1995) Global and regional ionosphere models using the GPS double difference phase observable. In: Proceedings of the IGS Workshop on Special Topics and New Directions, May 1995, Potsdam, Germany. pp 77–92

  • Seo J, Walter T (2014) Future dual-frequency GPS navigation system for intelligent air transportation under strong ionospheric scintillation. IEEE Trans Intell Transp Syst 15:2224–2236. https://doi.org/10.1109/Tits.2014.2311590

    Article  Google Scholar 

  • Song S, Xue J, Zou Z (2016) The stability analysis of GNSS satellite DCB. In: IGS workshop 2016, February 8–12, Sydney, NSW, Australia

  • Xue J-C, Song S-L, Zhu W-Y, Lu X-S (2012) A study on the reliability of the ionospheric VTEC and satellite DCB derived from a regional GPS network chinese astronomy and astrophysics 36(1):73–85. https://doi.org/10.1016/j.chinastron.2011.12.008

    Google Scholar 

  • Zhang D, Shi H, Jin Y, Zhang W, Hao Y, Xiao Z (2013) The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Sci China Technol Sci 57(1):67–79. https://doi.org/10.1007/s11431-013-5419-7

    Article  Google Scholar 

  • Zhong J, Lei J, Dou X, Yue X (2015) Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solut 20(3):313–319. https://doi.org/10.1007/s10291-015-0437-5

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by Development of Space Core Technology Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017M1A3A3A02016230), contracted through the Institute of Advanced Aerospace Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changdon Kee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Kim, D. & Kee, C. Improving performance of GPS satellite DCB estimation for regional GPS networks using long-term stability. GPS Solut 22, 13 (2018). https://doi.org/10.1007/s10291-017-0669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-017-0669-7

Keywords

Navigation