Skip to main content
Log in

Spectral characteristics of auroral region scintillation using 100 Hz sampling

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

With advances in Global Positioning System (GPS) receiver hardware, increased sampling rates have become available, allowing for more robust spectral analysis in the field of ionospheric scintillation research. However, with previous work having access to GPS observables sampled at 50 Hz in the Canadian auroral region, the higher-frequency results have been dismissed, typically denoted as noise with the assumption that no scintillation characteristics can be obtained therein. The introduction of the Septentrio PolaRxS Pro GPS receiver, which can sample at a maximum rate of 100 Hz, allows for a robust analysis of these higher frequencies. Spectral characteristics of both signal intensity and carrier phase on the L1 carrier, obtained within the Canadian auroral region, are presented in this paper. These spectra are shown to deviate from the expected power-law behavior in the higher-frequency region. This region is shown to be free of observable scintillation characteristics in the signal intensity spectra and is likely a contamination due to white noise, confirming the results of previous work. The carrier phase spectrum, on the other hand, displays characteristics less likely to be noise. The expected power-law behavior is observed in these spectra, with a shallowing of the slope seen in the higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Akala AO, Awoyele A, Doherty PH (2016) Statistics of GNSS amplitude scintillation occurrences over Dakar, Senegal at varying elevation angles during the maximum phase of solar cycle 24. Space Weather 14:233–246

    Article  Google Scholar 

  • Briggs BH, Parkin IA (1963) On the variation of radio star and satellite scintillations with zenith angle. J Atmos Terr Phys 25(6):339–366

    Article  Google Scholar 

  • Choi K, Bilich A, Larson K, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett. doi:10.1029/2004gl021621

    Google Scholar 

  • Cronyn WM (1970) The analysis of radio scattering and space-probe observations of small-scale structure in the interplanetary medium. Astrophys J 161:755

    Article  Google Scholar 

  • Elkins TJ, Papagiannis MD (1969) Measurement and interpretation of power spectrums of ionospheric scintillation at a sub-auroral location. J Geophys Res 74(16):4105–4115

    Article  Google Scholar 

  • Getmantsev GG, Eroukhimov LM (1969) Radio star and satellite scintillations. Ann IQSY 5:229–259

    Google Scholar 

  • Gruber S (1961) Statistical analysis of radio star scintillation. J Atmos Terr Phys 20(1):59–71

    Article  Google Scholar 

  • Jayachandran PT, Langley RB, MacDougall JW, Mushini SC, Pokhotelov D, Hamza AM, Mann IR, Milling DK, Kale ZC, Chadwick R, Kelly T, Danskin DW, Carrano CS (2009) The Canadian high arctic ionospheric network (CHAIN). Radio Sci 44:RS0A03. doi:10.1029/2008RS004046

    Article  Google Scholar 

  • Jespersen JL, Kamas G (1964) Satellite scintillation observations at Boulder, Colorado. J Atmos Terr Phys 26(4):457–473

    Article  Google Scholar 

  • Jones IL (1960) Further observations of radio stellar scintillation. J Atmos Terr Phys 19(1):26–36

    Article  Google Scholar 

  • Leick A (2004) GPS satellite surveying. Wiley, Hoboken

    Google Scholar 

  • Li G, Ning B, Yuan H (2007) Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region. Earth Planets Space 59(4):279–285

    Article  Google Scholar 

  • Mann IR, Milling DK, Rae IJ, Ozeke LG, Kale A, Kale ZC, Murphy KR, Parent A, Usanova M, Pahud DM, Lee EA (2008) The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci Rev 141(1):413–451

    Article  Google Scholar 

  • McCaffrey AM, Jayachandran PT (2014) Auroral scintillation characteristics using 100 Hz sampling of global positioning satellite systems. In: International Union of Radio Science General Assembly and Scientific Symposium (URSI GASS) conference, Beijing, China, August 16–23, 2014

  • McCaffrey AM, Jayachandran PT (2017) Observation of sub‐second variations in auroral region total electron content using 100 Hz sampling of GPS observables. J Geophys Res Space Phys 122(6):6892–6900

    Article  Google Scholar 

  • Mezaoui H, Hamza AM, Jayachandran PT (2014) Investigating high-latitude ionospheric turbulence using global positioning system data. Geophys Res Lett 41(19):6570–6576

    Article  Google Scholar 

  • Mushini SC (2013) Characteristics of scintillating GPS signal at high latitudes during solar minima. Doctoral Dissertation, University of New Brunswick, Department of Physics

  • Mushini SC, Jayachandran PT, Langley RB, MacDougall JW, Pokhotelov D (2012) Improved amplitude-and phase-scintillation indices derived from wavelet detrended high-latitude GPS data. GPS Sol 16(3):363–373

    Article  Google Scholar 

  • Phelps ADR, Sagalyn RC (1976) Plasma density irregularities in the high-latitude top side ionosphere. J Geophys Res 81(4):515–523

    Article  Google Scholar 

  • Prikryl P, Jayachandran PT, Mushini SC, Chadwick R (2011) Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions. Ann Geophys 29(2):377–392

    Article  Google Scholar 

  • Prikryl P, Ghoddousi-Fard R, Kunduri BSR, Thomas EG, Coster AJ, Jayachandran PT, Danskin DW (2013) GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm. Ann Geophys 31(5):805–816. doi:10.5194/angeo-31-805-2013

    Article  Google Scholar 

  • Rufenach CL (1971) A radio scintillation method of estimating the small-scale structure in the ionosphere. J Atmos Terr Phys 33(12):1941–1951

    Article  Google Scholar 

  • Rufenach CL (1972) Power-law wavenumber spectrum deduced from ionospheric scintillation observations. J Geophys Res 77(25):4761–4772

    Article  Google Scholar 

  • Rumsey VH (1975) Scintillations due to a concentrated layer with a power-law turbulence spectrum. Radio Sci 10(1):107–114

    Article  Google Scholar 

  • Serrano L, Kim D, Langley RB (2005) A new carrier-phase multipath observable for GPS real-time kinematics based on between receiver dynamics. In: Proceedings of Annual Meeting of Institute of Navigation, pp 1105–1115

  • Skone S, Knudsen K, de Jong M (2001) Limitations in GPS receiver tracking performance under ionospheric scintillation conditions. Phys Chem Earth A 26(6–8):613–621. doi:10.1016/s1464-1895(01)00110-7

    Article  Google Scholar 

  • Spiker J, Parkinson BW (1996) The global positioning system: theory and application. American Institute of Aeronautics and Astronautics, Washington DC, pp 717–763

    Book  Google Scholar 

  • Tsunoda RT (1988) High-latitude F region irregularities: a review and synthesis. Rev Geophys 26(4):719–760

    Article  Google Scholar 

  • Urneki R, Liu CH, Yeh KC (1977) Multifrequency studies of ionospheric scintillations. Radio Sci 12(2):311–317

    Article  Google Scholar 

  • Van Dierendonck AJ, Klobuchar J, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of ION GPS 1993, Salt Palace Convention Center, Salt Lake City, Utah, USA, September 22–24, pp 1333–1342

  • Watson C, Jayachandran PT, Spanswick E, Donovon EF, Danskin DW (2011) GPS TEC technique for observation of the evolution of substorm particle injection. Geophys Res 116:A00I90. doi:10.1029/2010JA015732

    Article  Google Scholar 

  • Wernik AW (1997) Wavelet transform of nonstationary ionospheric scintillation. Acta Geophys Pol 45:237–253

    Google Scholar 

  • Wernik AW, Liu CH (1974) Ionospheric irregularities causing scintillation of GHz frequency radio signals. J Atmos Terr Phys 36(5):871–879

    Article  Google Scholar 

  • Yeh KC, Liu CH (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70(4):324–360

    Article  Google Scholar 

Download references

Acknowledgements

Infrastructure funding for CHAIN was provided by the Canada Foundation for Innovation (CFI) and the New Brunswick Innovation Foundation (NBIF). CHAIN is conducted in collaboration with the Canadian Space Agency (CSA). Additional funding is provided by the David M. Armstrong fellowship, established by Dr. Richard Armstrong. The authors thank I.R. Mann, D.K. Milling, and the rest of the CARISMA team for data. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. McCaffrey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCaffrey, A.M., Jayachandran, P.T. Spectral characteristics of auroral region scintillation using 100 Hz sampling. GPS Solut 21, 1883–1894 (2017). https://doi.org/10.1007/s10291-017-0664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-017-0664-z

Keywords

Navigation