Skip to main content
Log in

Characterization of Doppler collision and its impact on carrier phase ambiguity resolution using geostationary satellites

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Doppler collision is a unique phenomenon in GNSS where tracking errors are introduced in the measurements due to cross-correlation between two or more satellites. It occurs when the relative Doppler frequencies of the satellites are less than the code loop bandwidth. Doppler collisions affect geostationary satellites for longer durations, due to their small line-of-sight velocities. This is a major concern for regional constellations such as IRNSS where geostationary satellites form a major part of the space segment. Doppler collision error resembles code multipath and if not mitigated could affect the ability to use pseudoranges of geostationary satellites in RTK positioning. We describe likely conditions for Doppler collision, derive a Doppler collision error envelope for L1 C/A code geostationary pseudorange measurements, and then demonstrate the effect using simulated and live signals. Results indicate that the error due to Doppler collision is not purely biased and varies with a mean value close to zero. The novelty includes analysis of Doppler collision effects on an RTK solution using geostationary satellites with emphasis on ambiguity convergence time. De-weighting of geostationary observations is proposed to reduce the impact of Doppler collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Balaei AT, Akos DM (2009) Doppler collision and cross correlation interference in GPS receivers. In: Proceedings of the IGNSS symposium 2009. International global navigation satellite systems society, holiday Inn Surfers Paradise, Qld, Australia

  • Balaei AT, Akos DM (2011) Cross correlation Impacts and observations in GNSS receivers. Navig J Inst Navig 58(4):323–333. doi:10.1002/j.2161-4296.2011.tb02589.x

    Article  Google Scholar 

  • Boriskin A, Kozlov D, Zyryanov G (2007) L1 RTK system with fixed ambiguity: what SBAS ranging brings. In: Proceedings ION GNSS 2007, Institute of Navigation, Fort Worth, Texas, USA, September 25–28, 2196–2201

  • Braasch MS (1997) Autocorrelation sidelobe considerations in the characterization of multipath errors. IEEE Trans Aerosp Electron Syst 33(1):290–295. doi:10.1109/7.570787

    Article  Google Scholar 

  • Braasch MS (2001) Performance comparison of multipath mitigating receiver architectures. In: Aerospace sonference, 2001, IEEE proceedings. Big Sky, MT, USA, pp 1309–1315

  • Braasch MS, van Dierendonck AJ (1999) GPS receiver architectures and measurements. Proc IEEE 87(1):48–64. doi:10.1109/5.736341

    Article  Google Scholar 

  • Cox DT, Shallberg KW, Manz A (1999) Definition and analysis of WAAS receiver multipath error envelopes. Navig J Inst Navig 46(4):271–282. doi:10.1002/j.2161-4296.1999.tb02414.x

    Article  Google Scholar 

  • de Jonge P, Tiberius C (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Computing Centre, LGR-Series pp 1–47

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Garin L, Rousseau J-M (1997) Enhanced strobe correlator multipath rejection for code & carrier. In: Proceedings ION GPS 1997, Institute of Navigation, Kansas City, Missouri, USA, September 16–19, pp 559–568

  • Gowdayyanadoddi NS, Curran JT, Broumandan A, Lachapelle G (2015) A ray-tracing technique to characterize GPS multipath in the frequency domain. Int J Navig Observ 2015:16. doi:10.1155/2015/983124

    Google Scholar 

  • Grewal MS, Andrews AP, Bartone CG (2013) Differential GNSS. Global navigation satellite systems, inertial navigation, and integration, 3rd edn. Wiley, Hoboken, pp 293–325

    Google Scholar 

  • Kaplan ED, Hegarty CJ (2005) Satellite signal acquisition, tracking, and data demodulation. Understanding GPS: principles and applications, 2nd edn. Artech House Inc., Norwood, pp 153–239

    Google Scholar 

  • Lestarquit L, Collet S (2000) Tracking error correction algorithm in case of quasi-stationary C/A code interference. In: Proceedings ION GPS 2000, Institute of Navigation, Salt Lake City, Utah, USA, September 19–22, pp 2323–2329

  • Lestarquit L, Malicorne M (2003) Correction algorithm for SBAS C/A code interference. In: Proceedings ION GPS/GNSS 2003, Institute of Navigation, Portland, Oregon, USA, September 9–12, pp 1345–1354

  • Lestarquit L, Nouvel O (2012) Determining and measuring the true impact of C/A code cross-correlation on tracking. In: Proceedings IEEE/ION PLANS 2012, Institute of Navigation, Myrtle Beach, South Carolina, USA, April 24–26, pp 1134–1140

  • Lestarquit L, Issler JL, Nouvel O et al (2009) Worst-case scenario SBAS Interference. GPS World Mag 20(4):37–42

    Google Scholar 

  • Misra P, Enge P (2006) GPS measurements and error sources. Global positioning system: signals, measurements, and performance, 2nd edn. Ganaga-Jamuna Press, Lincoln, pp 147–193

    Google Scholar 

  • Mruthyunjaya L, Ganeshan A S (2014) Indian Regional Navigation Satellite System Standard Positioning Service Signal in Space Interface Control Document (IRNSS SPS SIS ICD), Version 1.0

  • Nievinski FG, Larson KM (2014) An open source GPS multipath simulator in Matlab/Octave. GPS Solut 18(3):473–481. doi:10.1007/s10291-014-0370-z

    Article  Google Scholar 

  • Nouvel O, Sihrener M, Issler J-L, et al (2007) SBAS C/A code interferences: observations and induced tracking errors. In: Proceedings ION GNSS 2007, Institute of Navigation, Fort Worth, Texas, USA, September 25–28, pp 950–959

  • Nouvel O, Sihrener M, Issler J-L, et al (2008) SBAS C/A code interference characterization and mitigation. In: ENC-GNSS 2008, European Navigation Conference. Toulouse, France

  • Ong RB, Petovello MG, Lachapelle G (2009) Assessment of GPS/GLONASS RTK under various operational conditions. In: Proceedings ION GNSS 2009, Institute of Navigation, Savannah, Georgia, USA, September 22–25, pp 3297–3308

  • Parkinson BW, Enge P, Axelrad P, Spilker JJ (1996) Wide area augmentation system. In: Global positioning system: theory and applications. American Institute of Aeronautics and Astronautics, pp 117–142

  • Petovello MG, O’Driscoll C, Lachapelle G et al (2008) Architecture and benefits of an advanced GNSS software receiver. J Glob Position Syst 7(2):156–168

    Article  Google Scholar 

  • Ray JK (2000) Mitigation of GPS code and carrier phase multipath effects using a multi-antenna system. Ph.D. Thesis, University of Calgary

  • Schempp T, Burke J, Rubin A (2008) WAAS Benefits of GEO Ranging. In: Proceedings ION GNSS 2008, Institute of Navigation, Savannah, Georgia, USA, September 16–19, pp 1903–1910

  • Spilker JJ, Axelrad P, Parkinson BW, Enge P (eds) (1996) Multipath effects. In: Global positioning system: theory and applications, volume I. American Institute of Aeronautics and Astronautics, pp 547–566. doi:10.2514/5.9781600866388.0547.0568

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1):65–82. doi:10.1007/BF00863419

    Article  Google Scholar 

  • Teunissen PJG (2001) Integer estimation in the presence of biases. J Geod 75(7):399–407. doi:10.1007/s001900100191

    Article  Google Scholar 

  • Teunissen PJ, Joosten P, Odijk D (1999) The reliability of GPS ambiguity resolution. GPS Solut 2(3):63–69. doi:10.1007/PL00012758

    Article  Google Scholar 

  • Thoelert S, Montenbruck O, Meurer M (2014) IRNSS-1A: signal and clock characterization of the Indian regional navigation system. GPS Solut 18(1):147–152. doi:10.1007/s10291-013-0351-7

    Article  Google Scholar 

  • Van Dierendonck AJ, Fenton P, Ford T (1992) Theory and performance of narrow correlator spacing in a GPS receiver. Navig J Inst Navig 39(3):265–283. doi:10.1002/j.2161-4296.1992.tb02276.x

    Article  Google Scholar 

  • Van Dierendonck AJ, McGraw GA, Erlandson RJ, Coker R (1999) Cross-correlation of C/A codes in GPS/WAAS Receivers. In: Proceedings ION GPS 1999, Institute of Navigation, Nashville, Tennessee, USA, September 14–17, pp 581–590

  • Verhagen S (2004) Integer ambiguity validation: an open problem? GPS Solut 8(1):36–43. doi:10.1007/s10291-004-0087-5

    Article  Google Scholar 

  • Wang G, de Jong K, Zhao Q et al (2015) Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut 19(1):129–139. doi:10.1007/s10291-014-0374-8

    Article  Google Scholar 

  • Wanninger L (2008) The future is now GPS + GLONASS + SBAS = GNSS. GPS World Mag 19(7):42–48

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Alberta Innovates Technology Futures-Informatics Circle Of Research Excellence (iCORE) Chair in Wireless Location.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimalkumar Bhandari.

Appendix

Appendix

Doppler collision error is determined by the cross-correlation function and the relative code phase. The error follows a bound similarly to a multipath error envelope (Spilker et al. 1996; Cox et al. 1999). In order to obtain Doppler collision error, code phases of the primary peak and the cross-correlation peak are obtained using true ranges. The relative code phase will determine the overlapping geographical area and the magnitude of Doppler collision.

If the user position is not known, the true ranges cannot be determined. In such cases, pseudorange code phases can be used to generate the error envelope. However, the pseudorange code phases are affected by the presence of multiple GEO satellites. Consider a case of only two WAAS satellites in view. The observed code phases of the two satellites are given by

$$\tau_{eff1} = \tau_{1} \pm \Delta \tau_{DC}$$
(13)
$$\tau_{eff2} = \tau_{2} \mp \Delta \tau_{DC} ,$$
(14)

where \(\tau_{1}\) and \(\tau_{2}\) are the pseudorange code phases for the first and the second satellite, respectively, with no Doppler collision conditions, and \(\Delta \tau_{DC}\) is code phase error due to Doppler collision. The effect of Doppler collision on desired satellite is exactly equal but opposite in magnitude on the second satellite. The Doppler collision error follows a multipath envelope, and thus the code measurement errors (in chips) are given by (Ray 2000)

$$\tau_{\text{error}} = \pm \frac{{\alpha \tau_{d} }}{1 + \alpha },\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,0 \le \tau_{d} < (1 + \alpha )T_{d}$$
(15)
$$\tau_{\text{error}} = \pm \alpha T_{d} ,\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,(1 \pm \alpha )T_{d} \le \tau_{d} < Tc - (1 \mp \alpha )T_{d}$$
(16)
$$\tau_{\text{error}} = \pm \frac{{\alpha (T_{c} + T_{d} - \tau_{d} )}}{(2 \mp \alpha )},\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,T_{c} - (1 \mp \alpha )T_{d} \le \tau_{d} < T_{c} + T_{d} ,$$
(17)

where α is the ratio of the cross-correlation peak to primary peak, \(\tau_{d}\) is the code delay of cross-correlation peak, \(T_{d}\) is the chip spacing, and \(T_{c}\) is the code length.

If the observed code phase is used, the relative delay will be affected by two times \(\Delta \tau_{DC}\) and the code delay of the cross-correlation peak during Doppler collision is

$$\tau_{d}^{DC} = \tau_{d} \pm 2\Delta \tau_{DC} .$$
(18)

Thus the offset in code measurement error is given as

$$\Delta \tau_{\text{error}} = \mp \frac{\alpha }{1 + \alpha }2\Delta \tau_{DC} ,\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,0 \le \tau_{d} < (1 + \alpha )T_{d}$$
(19)
$$\Delta \tau_{\text{error}} = 0,\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,(1 \pm \alpha )T_{d} \le \tau_{d} < Tc - (1 \mp \alpha )T_{d}$$
(20)
$$\Delta \tau_{\text{error}} = \pm \frac{{\alpha (T_{c} + T_{d} \mp 2\Delta \tau_{DC} )}}{(2 \mp \alpha )},\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,T_{c} - (1 \mp \alpha )T_{d} \le \tau_{d} < T_{c} + T_{d} .$$
(21)

If the relative signal strength of the WAAS satellites is zero, α = 0.0616. For a standard correlator \(T_{d} = 1\) and the maximum error due to Doppler collision is \(\Delta \tau_{DC} =\) 0.0304 chip (~9 m). Thus, the maximum offset in Doppler collision error caused by approximating the true range code phases with pseudorange code phases is given by

$$\Delta \tau_{\text{error}} = 0. 0 0 3 5\,{\text{chip}} \cong 1.03\,{\text{m}},\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,0 \le \tau_{d} < (1 + \alpha )T_{d}$$
(22)
$$\Delta \tau_{\text{error}} = 0. 0 {\text{ chip,}}\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,(1 \pm \alpha )T_{d} \le \tau_{d} < Tc - (1 \mp \alpha )T_{d}$$
(23)
$$\Delta \tau_{\text{error}} = 0. 0 0 1 8\,{\text{chip}} \cong 0.53\,{\text{m}},\,{\text{in}}\,{\text{the}}\,{\text{range}}\,{\text{of}}\,T_{c} - (1 \mp \alpha )T_{d} \le \tau_{d} < T_{c} + T_{d} .$$
(24)

Considering that the error envelope varies up to 9 m, an offset less than 1 m is acceptable. The error envelope is computed using pseudorange code phases for Rx1; the reference receiver used in Doppler collision simulation, Fig. 4, is shown in Fig. 22. The pseudorange-based error envelope is compared against the error envelope obtained using the true geometric ranges. The difference between the envelopes never exceeds 1.1 m and has a standard deviation of 0.24 m. The variation is largest during rising and fall of the error envelope.

Fig. 22
figure 22

Doppler collision error envelope using code phase from pseudorange and geometric range

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, V., O’Keefe, K. Characterization of Doppler collision and its impact on carrier phase ambiguity resolution using geostationary satellites. GPS Solut 21, 1707–1720 (2017). https://doi.org/10.1007/s10291-017-0648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-017-0648-z

Keywords

Navigation