Skip to main content
Log in

Computation of satellite clock–ephemeris corrections using a priori knowledge for satellite-based augmentation system

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The dual-frequency multi-constellation (DFMC) satellite-based augmentation system (SBAS) should be able to provide a vertical protection level in the range of 10–12 m, which is sufficient to support Category I precision approach operations. Because of the limited data rate of the SBAS signal and the need to augment 91 satellites simultaneously, DFMC SBAS does not broadcast equivalent terms for fast pseudorange corrections in legacy L1-only SBAS. An analysis of the wide area augmentation system (WAAS) suggests that the range error after applying long-term satellite error corrections, known as satellite clock–ephemeris (SCE) corrections in DFMC SBAS, is not accurate enough for Category I operations. Thus, it is necessary to improve the accuracy of these SCE corrections. With the construction of DFMC SBAS, there is an opportunity to upgrade the SCE correction algorithm. Based on the fact that the Global Navigation Satellite System SCE parameter-fitting error constitutes the majority of the SCE error, we propose a method of computing the SCE corrections by combining a priori knowledge of the SCE parameter-fitting error with real-time measurements. A comparison of the user range error after applying WAAS SCE corrections and fast corrections indicates that the proposed method extends the period when a satellite is augmented by 22.9 % and reduces the root mean square error by 27 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2015a) Global positioning system (GPS) standard positioning service (SPS) performance analysis report #90. William J. Hughes Technical Center. http://www.nstb.tc.faa.gov/REPORTS/PAN90_0715.pdf

  • Anonymous (2015b) Wide-area augmentation system performance analysis report #53. William J. Hughes Technical Center. http://www.nstb.tc.faa.gov/reports/waaspan53.pdf

  • Arnold LL, Zandbergen PA (2011) Positional accuracy of the wide area augmentation system in consumer-grade GPS units. Comput Geosci 37(7):883–892. doi:10.1016/j.cageo.2010.12.011

    Article  Google Scholar 

  • Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geodesy 89(8):775–791. doi:10.1007/s00190-015-0814-4

    Article  Google Scholar 

  • Böhm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett. doi:10.1029/2005GL025546

    Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geodesy 81(10):679–683

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) User manual of the Bernese GPS software version 5.0. Astronomical Institute, University of Bern

  • Dautermann T (2014) Civil air navigation using GNSS enhanced by wide area satellite based augmentation systems. Prog Aerosp Sci 67(3):51–62. doi:10.1016/j.paerosci.2014.01.003

    Article  Google Scholar 

  • Enge P, Walter T, Pullen S, Kee C, Chao YC, Tsai YJ (1996) Wide area augmentation of the global positioning system. Proc IEEE 84(8):1063–1088. doi:10.1109/5.533954

    Article  Google Scholar 

  • Fidalgo J, Odriozola M, Cueto M, Cezón A, Caro J, Rodriguez C, Brocard D, Denis JC, Chatre E (2014) SBAS L5 enhanced ICD for aviation: definition and preliminary experimentation results. In: Proceedings on ION GNSS + 2014, Institute of Navigation, Tampa, Florida, pp 3289–3298, 8–12 Sept

  • Gelb A (1974) Applied optimal estimation. MIT press, Cambridge

    Google Scholar 

  • Grewal MS (2012) Space-based augmentation for global navigation satellite systems. IEEE Trans Ultrason Ferroelectr Freq Control 59(3):497–503. doi:10.1109/TUFFC.2012.2220

    Article  Google Scholar 

  • Hackel S, Steigenberger P, Hugentobler U, Uhlemann M, Montenbruck O (2013) Galileo orbit determination using combined GNSS and SLR observations. GPS Solut 19(1):15–25. doi:10.1007/s10291-013-0361-5

    Article  Google Scholar 

  • Heßelbarth A, Wanninger L (2013) SBAS orbit and satellite clock corrections for precise point positioning. GPS Solut 17(4):465–473. doi:10.1007/s10291-012-0292-6

    Article  Google Scholar 

  • Kim J, Lee YJ (2015) Using ionospheric corrections from the space-based augmentation systems for low earth orbiting satellites. GPS Solut 19(3):423–431. doi:10.1007/s10291-014-0402-8

    Article  Google Scholar 

  • Li XR, Jilkov VP (2003) Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans Aerosp Electron Syst 39(4):1333–1364. doi:10.1109/TAES.2003.1261132

    Article  Google Scholar 

  • Rodriguez-Solano CJ, Hugentobler U, Steigenberger P (2012) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 49(7):1113–1128. doi:10.1016/j.asr.2012.01.016

    Article  Google Scholar 

  • Roturier B, Chatre E, Ventura-Traveset J (2001) The SBAS integrity concept standardised by ICAO. Application to EGNOS. EGNOS resources. http://www.egnos-pro.esa.int/Publications/GNSS%202001/SBAS_integrity.pdf. Accessed 10 July 2016

  • RTCA (2006) Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment, RTCA DO-229D. RTCA, Inc., December 2006

  • Shallberg K, Sheng F (2008) WAAS measurement processing; current design and potential improvements. In: Proceedings on ION PLANS 2008, Institute of Navigation, Monterey, CA, pp 253–262, 5–8 May 2008. doi:10.1109/PLANS.2008.4570014

  • Shallberg K, Shloss P, Altshuler E, Tahmazyan L (2001) WAAS measurement processing, reducing the effects of multipath. In: Proceedings on ION GPS 2001, Institute of Navigation, Salt Lake City, UT, pp 2334–2340, 11–14 Sept

  • Singer R (1970) Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Trans Aerosp Electron Syst 6(4):473–483. doi:10.1109/TAES.1970.310128

    Article  Google Scholar 

  • Sparks L, Blanch J, Pandya N (2011a) Estimating ionospheric delay using kriging: 1. Methodology. Radio Sci 46(6):999–1010. doi:10.1029/2011RS004667

    Google Scholar 

  • Sparks L, Blanch J, Pandya N (2011b) Estimating ionospheric delay using kriging: 2. Impact on satellite-based augmentation system availability. Radio Sci 46(6):1241–1249. doi:10.1029/2011RS004667

    Google Scholar 

  • Springer TA, Hugentobler U (2001) IGS ultra rapid products for (near-) real-time applications. Phys Chem Earth Part A Solid Earth Geodesy 26(6):623–628. doi:10.1016/S1464-1895(01)00111-9

    Article  Google Scholar 

  • Wang S, Zhu B (2013) A new method to make ionospheric delay corrections in SBAS for GPS and Compass dual constellations. In: Proceedings on ION GNSS + 2013, Institute of Navigation, Nashville, Tennessee, pp 865–874, 16–20 Sept

Download references

Acknowledgments

The authors gratefully acknowledge Beijing Laboratory for General Aviation Technology and Beijing Key Laboratory (No. BZ0272) for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Huang, Z. & Li, R. Computation of satellite clock–ephemeris corrections using a priori knowledge for satellite-based augmentation system. GPS Solut 21, 663–673 (2017). https://doi.org/10.1007/s10291-016-0555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0555-8

Keywords

Navigation