Skip to main content
Log in

Precise orbit and baseline determination for maneuvering low earth orbiters

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Orbital maneuvers are usually performed as needed for low earth orbiters to maintain a predefined trajectory or formation-flying configuration. To avoid unexpected discontinuities and to connect pre- and post-maneuver arcs with a minimal set of parameters, a maneuver has to be considered in the routine GPS-based orbit determinations. We propose a maneuver handling method in a reduced-dynamic scheme. With the proper thrust modeling and numerical integration strategy, the effects caused by orbital maneuver can be largely eliminated. The performance for both single-satellite precise orbit determination (POD) and inter-satellite precise baseline determination (PBD) is demonstrated using selected data sets from the Gravity Recovery and Climate Experiment (GRACE) mission. For the POD results, the orbit determination residuals indicate that the orbit with maneuver modeling is well fit to the GPS observations. The external orbit validation shows that the GRACE-B orbits obtained from our approach match the DLR reference orbits better than 3 cm (3D RMS), which is comparable to the result of the maneuver-free GRACE-A satellite. For the PBD results, on average 87 % of double-difference phase ambiguities can be resolved to integers and an RMS of the K-band ranging system residuals of better than 0.7 mm can be achieved, even though the orbital maneuver was performed on the spacecraft. Furthermore, the actual maneuver performance derived from the POD and PBD results provides rigorous feedback on the thruster system, which is not only beneficial for current maneuver assessment but also for future maneuver plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bertiger W, Desai S, Haines B et al (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Beutler G, Jäggi A, Hugentobler U, Mervart L (2006) Efficient satellite orbit modelling using pseudo-stochastic parameters. J Geod 80(7):353–372. doi:10.1007/s00190-006-0072-6

    Article  Google Scholar 

  • Bock H, Jäggi A, Beutler G, Meyer U (2014) GOCE: precise orbit determination for the entire mission. J Geod 88(11):1047–1060. doi:10.1007/s00190-014-0742-8

    Article  Google Scholar 

  • D’Amico S, Ardaens JS, Larsson R (2012) Spaceborne autonomous formation-flying experiment on the PRISMA mission. J Guid Control Dyn 35(3):834–850. doi:10.2514/1.55638

    Article  Google Scholar 

  • D’Amico S, Ardaens JS, Flobio SD (2013) Autonomous formation flying based on GPS-PRISMA flight results. Acta Astronaut 82(1):69–79. doi:10.1016/j.actaastro.2012.04.033

    Article  Google Scholar 

  • Gill E, D’Amico S, Montenbruck O (2007) Autonomous formation flying for the PRISMA mission. J Spacecr Rockets 44(3):671–681. doi:10.2514/1.23015

    Article  Google Scholar 

  • Gu DF, Yi DY (2011) Reduced dynamic orbit determination using differenced phase in adjacent epochs for spaceborne dual-frequency GPS. Chin J Aeronaut 24(6):789–796. doi:10.1016/S1000-9361(11)60093-9

    Article  Google Scholar 

  • Haines H, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geod 27:299–318. doi:10.1080/01490410490465300

    Article  Google Scholar 

  • Hatch R (1982) The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite Doppler positioning at physical sciences laboratory of New Mexico State University, vol 2, pp 1213–1231

  • Huang TY, Zhou QL (1993) Adams–Cowell integrator with a first sum. Chin Astron Astrophys 17(2):205–213. doi:10.1016/0275-1062(93)90071-V

    Article  Google Scholar 

  • Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-earth orbiters. J Geod 80(1):47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  • Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GEACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. doi:10.1016/j.asr.2007.03.012

    Article  Google Scholar 

  • Jäggi A, Montenbruck O, Moon Y et al (2012) Inter-agency comparison of TanDEM-X baseline solutions. Adv Space Res 50(2):260–271. doi:10.1016/j.asr.2012.03.027

    Article  Google Scholar 

  • Krieger G, Moreira A, Fiedler H et al (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341. doi:10.1109/TGRS.2007.900693

    Article  Google Scholar 

  • Kroes R, Montenbruck O, Bertiger W, Visser P (2005) Precise GRACE baseline determination using GPS. GPS Solut 9:21–31. doi:10.1007/s10291-004-0123-5

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New York

    Google Scholar 

  • Liu JH, Gu DF, Ju B et al (2014) Basic performance of BeiDou-2 navigation satellite system used in LEO satellites precise orbit determination. Chin J Aeronaut 27(5):1251–1258. doi:10.1016/j.cja.2014.03.006

    Article  Google Scholar 

  • Montenbruck O, Gill E (2000) Satellite orbits: models, methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Montenbruck O, van Helleputte T, Kroes R, Gill E (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3):261–271. doi:10.1016/j.ast.2005.01.003

    Article  Google Scholar 

  • Montenbruck O, Kirschner M, D’Amico S, Bettadpur S (2006) E/I-vector separation for safe switching of the GRACE formation. Aerosp Sci Technol 10(7):628–635. doi:10.1016/j.ast.2006.04.001

    Article  Google Scholar 

  • Montenbruck O, Wermuth M, Kahle R (2011) GPS based relative navigation for the TanDEM-X mission—first flight results. Navigation 58(4):293–304. doi:10.1002/j.2161-4296.2011.tb02587.x

    Article  Google Scholar 

  • Moon Y, Koenig R, Wermuth M (2012) Operational precise baseline determination for TanDEM-X DEM processing. In: Proceedings of IEEE international geoscience and remote sensing symposium at Munich, July 22–27, pp 1633–1636. doi:10.1109/IGARSS.2012.6351215

  • Prince PJ, Dormand JR (1981) High order embedded Runge–Kutta formulae. J Comp Appl Math 7(1):67–75. doi:10.1016/0771-050X(81)90010-3

    Article  Google Scholar 

  • Tapley BD, Reigber C (2001) The GRACE mission: status and future plans. EOS Trans AGU 82(47), Fall Meet. Suppl. G41 C-02

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82. doi:10.1007/BF00863419

    Article  Google Scholar 

  • Tu J, Gu DF, Wu Y, Yi DY (2012) Phase residual estimations for PCVs of spaceborne GPS receiver antenna and their impacts on precise orbit determination of GRACE satellites. Chin J Aeronaut 25(4):631–639. doi:10.1016/S1000-9361(11)60428-7

    Article  Google Scholar 

  • Visser P, van den Ijssel J (2003) Aiming at a 1-cm orbit for low earth orbiters: reduced-dynamic and kinematic precise orbit determination. Space Sci Rev 108(1–2):27–36. doi:10.1023/A:1026253328154

    Article  Google Scholar 

  • Wu SC, Yunck TP, Thornton CL (1991) Reduced-dynamic technique for precise orbit determination of low earth satellites. J Guidance Control Dyn 14(1):24–30. doi:10.2514/3.20600

    Article  Google Scholar 

  • Yoon YT, Montenbruck O, Kirschner M (2006) Precise maneuver calibration for remote sensing satellites. In: Proceedings of the 19th international symposium on space flight dynamics at Kanazawa, June 4–11, pp 607–612

  • Yoon YT, Eineder M, Yague-Martinez N, Montenbruck O (2009) TerraSAR-X precise trajectory estimation and quality assessment. IEEE Trans Geosci Remote Sens 47(6):1859–1868. doi:10.1109/TGRS.2008.2006983

    Article  Google Scholar 

  • Zelensky NP, Lemoine FG, Ziebart M et al (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46(12):1541–1558. doi:10.1016/j.asr.2010.05.008

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 61370013 and 91438202). The authors would like to thank the Information Systems and Data Center (ISDC) and the German Space Operations Center (GSOC) for providing the science data and maneuver information of the GRACE mission. We also want to acknowledge Dr. Yoke Yoon for providing the information that helped the research and reviewing the paper. Last but not least, the comments and suggestions of the anonymous reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, B., Gu, D., Herring, T.A. et al. Precise orbit and baseline determination for maneuvering low earth orbiters. GPS Solut 21, 53–64 (2017). https://doi.org/10.1007/s10291-015-0505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0505-x

Keywords

Navigation