Skip to main content
Log in

PLL bandwidth and noise in 100 Hz GPS measurements

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The impact of the phase-locked loop (PLL) bandwidth on the noise and correlations of GPS measurements sampled with a 100 Hz rate has been investigated using short and long baselines, and stationary or moving GPS rovers recording oscillations with known characteristics relative to “true” reference values. Data have been collected under various satellite constellations using various values of PLL bandwidth, particularly 25, 50, 100 Hz, and were processed in differential mode using different software packages. Analysis of standard deviations, spectra and autocorrelation functions of the differences between recorded and true displacements revealed that an increase in the PLL bandwidth leads to reduction in correlations and increase in low- and high-frequency noise of 100 Hz data. Optimal results can be obtained using either a pre-set 50 Hz PLL bandwidth or a 100 Hz PLL bandwidth combined with a posteriori band-pass filtering of the coordinates. Such optimal results permit accurate recording of high-frequency (>5 Hz), dynamic displacements of a few millimeters and indicate that 100 Hz data are useful for monitoring high-frequency structural vibrations, and also strong earthquake motions and high-frequency movements of vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Avallone A, Marzario M, Cirella A et al (2011) Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: the case of the Mw 6.3 L’Aquila (central Italy) event. J Geophys Res 116(B2):B02305. doi:10.1029/2010JB007834

    Article  Google Scholar 

  • Bachmann H (1997) Vibration problems in structures: practical guidelines, 2nd edn. Birkhäuser, Basel

    Google Scholar 

  • Boore DM, Bommer JJ (2005) Processing of strong-motion accelerograms: needs, options and consequences. Soil Dyn Earthq Eng 25(2):93–115. doi:10.1016/j.soildyn.2004.10.007

    Article  Google Scholar 

  • Braasch MS, Van Dierendonck AJ (1999) GPS receiver architectures and measurements. Proc IEEE 87(1):48–64. doi:10.1109/5.736341

    Article  Google Scholar 

  • Carden EP, Brownjohn JMW (2008) Fuzzy clustering of stability diagrams for vibration-based structural health monitoring. Comput Aided Civil Infrastruct Eng 23(5):360–372. doi:10.1111/j.1467-8667.2008.00543.x

    Article  Google Scholar 

  • Casciati F, Fuggini C (2011) Monitoring a steel building using GPS sensors. Smart Struct Syst 7(5):349–363

    Article  Google Scholar 

  • Chan W-S, Xu Y-L, Ding X-L et al (2006) Assessment of dynamic measurement accuracy of GPS in three directions. J Surv Eng 132(3):108. doi:10.1061/(ASCE)0733-9453

    Article  Google Scholar 

  • Genrich JF, Bock Y (2006) Instantaneous geodetic positioning with 10–50 Hz GPS measurements: noise characteristics and implications for monitoring networks. J Geophys Res 111(B3):B03403. doi:10.1029/2005JB003617

    Article  Google Scholar 

  • Häberling S, Rothacher M, Geiger A (2012) Assessment of high-rate GPS using a single-axis shake table. In: Proceedings of the European Geosciences Union (EGU) general assembly 2012, Vienna, Austria, 22–27 April

  • Han S, Rizos C (1997) Multipath effects on GPS in mine environments. In: 10th international congress of the International Society for Mine Surveying Fremantle, Australia

  • Herring T (2000) GLOBK: global Kalman filter VLBI and GPS analysis program, version 10.0. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Kaplan ED, Hegarty CJ (2006) Understanding GPS: principles and applications. Artech House, Boston

    Google Scholar 

  • Kashani I, Wielgosz P, Grejner-Brzezinska D (2007) The impact of the ionospheric correction latency on long-baseline instantaneous kinematic GPS positioning. Surv Rev 39(305):238–251. doi:10.1179/175227007X197156

  • Kumar-Tiwari S, Ravindra-Babu S, Kumar R (2011) Design of baseband processor for high dynamic GPS signals using higher order loops. Int J Mach Learn Comput 1(50):516–521

    Article  Google Scholar 

  • Lian P, Lachapelle G, Ma C (2005) Improving tracking performance of PLL in high dynamics applications. In: Proceedings of the 2005 national technical meeting of the institute of navigation, January 24–26, 2005. The Catamaran Resort Hotel, San Diego, CA, pp 1042–1052

  • Meng X (2002) Real-time deformation monitoring of bridges using GPS/accelerometers. The University of Nottingham, Institute of Engineering Surveying and Space Geodesy

  • Meng X, Dodson AH, Roberts GW (2007) Detecting bridge dynamics with GPS and triaxial accelerometers. Eng Struct 29(11):3178–3184. doi:10.1016/j.engstruct.2007.03.012

    Article  Google Scholar 

  • Moschas F, Steirou E (2013) Statistical estimation of changes in the dominant frequencies of structures in long noisy series of monitoring data. Math Probl Eng. doi:10.1155/2013/216860

    Google Scholar 

  • Moschas F, Stiros S (2011) Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng Struct 33(1):10–17. doi:10.1016/j.engstruct.2010.09.013

    Article  Google Scholar 

  • Moschas F, Stiros S (2013a) Phase effect in time-stamped accelerometer measurements—an experimental approach. Int J Metrol Qual Eng 3(3):161–167. doi:10.1051/ijmqe/2012025

    Article  Google Scholar 

  • Moschas F, Stiros S (2013b) Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments. Measurement 46(4):1488–1506. doi:10.1016/j.measurement.2012.12.015

    Article  Google Scholar 

  • Moschas F, Stiros SC (2014) Three-dimensional dynamic deflections and natural frequencies of a stiff footbridge based on measurements of collocated sensors. Struct Control Health Monit 21(1):23–42. doi:10.1002/stc.1547

    Article  Google Scholar 

  • Ogaja C, Satirapod C (2007) Analysis of high-frequency multipath in 1-Hz GPS kinematic solutions. GPS Solut 11(4):269–280. doi:10.1007/s10291-007-0058-8

    Article  Google Scholar 

  • Psimoulis P, Stiros S (2012) A supervised learning computer-based algorithm to derive the amplitude of oscillations of structures using noisy GPS and Robotic Theodolites (RTS) records. Comput Struct 92–93:337–348. doi:10.1016/j.compstruc.2011.10.019

  • Psimoulis P, Pytharouli S, Karambalis D, Stiros S (2008) Potential of Global Positioning System (GPS) to measure frequencies of oscillations of engineering structures. J Sound Vib 318(3):606–623. doi:10.1016/j.jsv.2008.04.036

    Article  Google Scholar 

  • Razavi A, Gebre-Egziabher D, Akos DM (2008) Carrier loop architectures for tracking weak GPS signals. IEEE Trans Aerosp Electron Syst 44(2):697–710. doi:10.1109/TAES.2008.4560215

    Article  Google Scholar 

  • Roberts G, Meng X, Dodson A, Cosser E (2002) Multipath mitigation for bridge deformation monitoring. J Glob Position Syst 1(1):25–33

    Article  Google Scholar 

  • Roberts G, Cosser E, Meng X, Dodson A (2004) High frequency deflection monitoring of bridges by GPS. J Global Position Syst 3(1–2):226–231

    Article  Google Scholar 

  • Smalley R (2009) High-rate GPS: how high do we need to go? Seismol Res Lett 80(6):1054–1061. doi:10.1785/gssrl.80.6.1054

    Article  Google Scholar 

  • Wolf H (1979) Ausgleichungs Rechnung II. Aufgaben und Beispiele zur praktischen Anwendung. Dummlers Verlag, Bonn

    Google Scholar 

  • Yi T-H, Li H-N, Gu M (2013) Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge. Measurement 46(1):420–432. doi:10.1016/j.measurement.2012.07.018

    Article  Google Scholar 

Download references

Acknowledgments

Thomas Herring is highly thanked for his guidance on processing the GPS data using TRACK and for his suggestions for the experimental procedure. Fanis Moschas was funded by the Karatheodori 2009 research program of the University of Patras (Program code: C-898). The manuscript was significantly improved after comments by two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stathis Stiros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschas, F., Stiros, S. PLL bandwidth and noise in 100 Hz GPS measurements. GPS Solut 19, 173–185 (2015). https://doi.org/10.1007/s10291-014-0378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0378-4

Keywords

Navigation