Skip to main content
Log in

Optimal design of broadcast ephemeris parameters for a navigation satellite system

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Computation of broadcast ephemerides is a fundamental task in satellite navigation and positioning. The GPS constellation is composed of medium-earth-orbit (MEO) satellites, and therefore can employ a uniform parameter set to produce broadcast ephemerides. However, other navigation satellite systems such as Compass and IRNSS may include a mixture of inclined-geosynchronous-orbit (IGSO), geostationary-earth-orbit (GEO) and MEO satellites, requiring different parameter sets for each type of orbit. We analyze the variational characteristics of satellite ephemerides with respect to orbital elements; then present a method to design an optimal parameter set for broadcast ephemerides, and derive the parameter sets for IGSO, GEO, and MEO satellites. The computational complexities of the user algorithms for the optimal parameter sets are equivalent to that of the standard GPS user algorithm. Simulation and statistical analyses indicate that the optimal parameter set is \( \left\{ {\sqrt {A_{0} } ,e_{0} ,i_{0} ,\Upomega_{0} ,M_{0} ,\omega_{0} ,\dot{\Upomega },\dot{u},\dot{i},C_{\Upomega c3} ,C_{\Upomega s3} ,C_{uc2} ,C_{us2} ,C_{rc2} ,C_{rs2} } \right\} \) for IGSO and GEO satellites, and \( \left\{ {\sqrt {A_{0} } ,e_{0} ,i_{0} ,\Upomega_{0} ,M_{0} ,\omega_{0} ,\dot{\Upomega },\dot{u},\dot{i},C_{uc2} ,C_{us2} ,C_{rc2} ,C_{rs2} ,C_{ic2} ,C_{is2} } \right\} \) for MEO satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ARINC (2000) Interface control document ICD-GPS-200C, IRN-200C–004, April 12. ARINC Research Corporation, El Segundo

    Google Scholar 

  • ARINC (2004) Interface control document ICD-GPS-200D, December 7. ARINC Research Corporation, El Segundo

    Google Scholar 

  • Beutler G (2005) Methods of celestial mechanics. Springer, Berlin

    Google Scholar 

  • Breiter S (2001) On the coupling of lunisolar resonances for earth satellite orbits. Celest Mech Dyn Astr 80(1):1–20. doi:10.1023/A.1012284224340

    Article  Google Scholar 

  • Chiang K, Huang Y, Tsai M, Chen K (2010) The perspective from Asia concerning the impact of compass/BEIDOU-2 on future GNSS. Surv Rev 42(315):3–19. doi:10.1179/003962609X451654

    Article  Google Scholar 

  • Gao Y, Xi X, Wang W (2007) Improved fitting algorithm design of broadcast ephemeris for GEO satellite. J Natl Univ Def Technol P R China 29(5):18–22

    Google Scholar 

  • Gilthorpe MS, Moore P (1992) A combined theory for zonal harmonic and resonance perturbations of a near-circular orbit with applications to COSMOS 1603 (1984–106A). Celest Mech Dyn Astr 54(4):363–391. doi:10.1007/BF00049148

    Article  Google Scholar 

  • Horemuž M, Andersson JV (2006) Polynomial interpolation of GPS satellite coordinates. GPS Solut 10(1):67–72. doi:10.1007/s10291-005-0018-0

    Article  Google Scholar 

  • Huang Y, Hu X, Wang X, Huang C, Geng Y (2006) Precision analysis of broadcast ephemeris for medium and high orbit satellites. Prog Astron 24(1):81–88

    Google Scholar 

  • Iubatti M, Villanti M, Vanelli-Coralli A, Corazza GE, Corazza S (2008) Ephemeris interpolation techniques for assisted GNSS services. Satellite communications and navigation systems. Springer, USA, pp 185–197. doi:10.1007/978-0-387-47524-0_14

    Google Scholar 

  • Kang Z, Tapley B, Ries J, Bettadpur S, Nagel P (2007) Impact of GPS satellite antenna offsets on GPS-based precise orbit determination. Adv Sp Res 39(10):1524–1530. doi:10.1016/j.asr.2006.11.003

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell, USA

    Google Scholar 

  • Kouba J (2003) A guide to using international GPS service (IGS) products [online]. IGS Central Bureau. Available at http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProducts.pdf

  • Oleynik EG, Mitrikas VV, Revnivykh SG, Serdukov AI, Dutov EN, Shiriaev VF (2006) High-accurate GLONASS orbit and clock determination for the assessment of system performance. Proceedings of ION GNSS 2006. Fort Worth, TX

    Google Scholar 

  • Remondi BW (2004) Computing satellite velocity using the broadcast ephemeris. GPS Solut 8(2):181–183. doi:10.1007/s10291-004-0094-6

    Article  Google Scholar 

  • Schenewerk M (2003) A brief review of basic GPS orbit interpolation strategies. GPS Solut 6(4):265–267. doi:10.1007/s10291-002-0036-0

    Google Scholar 

  • Vallado DA (2007) Fundamentals of astrodynamics and application, 3rd edn. Microcosm Press, Hawthorne

    Google Scholar 

  • Wagner CA, Klosko SM (1977) Gravitational harmonics from shallow resonant orbits. Celest Mech Dyn Astr 16(2):143–163. doi:10.1007/BF01228597

    Google Scholar 

  • Warren DL, Raquet JF (2003) Broadcast versus precise GPS ephemerides: a historical perspective. GPS Solut 7(3):151–156. doi:10.1007/s10291-003-0065-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Wu, M. Optimal design of broadcast ephemeris parameters for a navigation satellite system. GPS Solut 16, 439–448 (2012). https://doi.org/10.1007/s10291-011-0243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-011-0243-7

Keywords

Navigation