Skip to main content
Log in

Analysis of inversion errors of ionospheric radio occultation

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The retrieved electron density profile of ionospheric radio occultation (RO) simulation data can be compared with the background model value during the simulation and the inversion error can be obtained exactly. This paper studies the inversion error of ionospheric RO through simulation. The sources of the inversion errors are analyzed. The impacts of measurement errors, such as the errors in phase measurements and satellite orbits, are very small and can be neglected. The approximation of straight-line propagation introduces errors at the height of the F1 layer under solar maximum condition. The spherical symmetry approximation of the electron density distribution is found to be the main source of the inversion error. The statistical results reveal some characteristics of the inversion errors. (1) The relative error increases with enhanced solar activity. (2) It is larger in winter than in equinox season, and it is smallest in summer. (3) For all seasons, it is smaller at middle latitude than at other latitudes. (4) For all seasons and geomagnetic latitudes, it is smaller at daytime than at other times. The NmF2 of the ROs from COSMIC are compared with the measurements of ionosondes, and the relative differences show the same dependencies on season, geomagnetic latitude and local time, as the relative errors of the simulated ionospheric ROs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beyerle G, Schmidt T, Michalak et al (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32(13):L13806. doi:10.1029/2005GL023109

  • Budden KG (1985) The propagation of radio waves. Cambridge University Press, Cambridge

    Google Scholar 

  • Fjeldbo G, Eshleman VR (1969) Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci 4:879–897. doi:10.1029/RS004i010p00879

    Article  Google Scholar 

  • Fjeldbo GF, Kliore AJ, Eshleman VR (1971) The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron J 76:123–140. doi:10.1086/111096

    Article  Google Scholar 

  • Garcia-Fernandez M, Hernandez-Pajare M, Juan M et al (2003) Improvement of ionospheric electron density estimation with GPS/MET occultations using Abel inversion and VTEC information. J Geophys Res 108(A9):1338. doi:10.1029/2003JA009952

    Article  Google Scholar 

  • Garcia-Fernandez M, Hernandez-Pajares M, Juan JM et al (2005) Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data. GPS Solut 9:105–110. doi:10.1007/s10291-005-0139-5

    Article  Google Scholar 

  • Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment. Radio Sci 33:175–190. doi:10.1029/97RS03183

    Article  Google Scholar 

  • Hajj GA, Lee IC, Pi X et al (2000) COSMIC GPS ionospheric sensing and space weather. Terres Atmos Ocean Sci 11(1):235–272

    Google Scholar 

  • Hajj GA, Ao CO, Iijima BA et al (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res Atmos 109(D6):D06109. doi:10.1029/2003JD003909

    Article  Google Scholar 

  • Haselgrove J (1963) The Hamilton ray path equations. J Atmos Terres Phys 25:397–399. doi:10.1016/0021-9169(63)90173-9

    Article  Google Scholar 

  • Høeg P, Hauchecorne A, Kirchengast G et al (1995) Derivation of atmospheric properties using a radio occultation technique, scientific report 95-4, Danish Meteorological Institute, Copenhagen

  • Høeg P, Larson GB, Benzon H et al (1998) GPS atmosphere profiling methods and error assessments, scientific report 98-7, Danish Meteorological Institute, Copenhagen

  • Jakowski N (2005) Ionospheric GPS radio occultation measurements on board CHAMP. GPS Solut 9:88–95. doi:10.1007/s10291-005-0137-7

    Article  Google Scholar 

  • Jakowski N, Wehrenpfennig A, Heise S et al (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10):1457. doi:10.1029/2001GL014364

    Article  Google Scholar 

  • Kirchengast G, Fritzer J, Ramsauer J (2002) End-to-end GNSS occultation performance simulator version 4 (EGOPS4) software user manual (overview and reference manual). Tech Rep ESA/ESTEC-3/2002, IGAM, University of Graz, Austria, p 44

  • Kursinski ER, Hajj GA, Schofield JT et al (1997) Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102(D19):23429–23465. doi:10.1029/97JD01569

    Article  Google Scholar 

  • Lei J, Syndergaard S, Burns AG et al (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112(A7):A07308. doi:10.1029/2006JA012240

    Article  Google Scholar 

  • Leitinger R, Titheridge JE, Kirchengast G, Rothleitner W (1996) A simple global empirical model for the F layer of the ionosphere. Kleinheubacher Ber 39:697–704

    Google Scholar 

  • Montenbruck O, Andres Y, Bock H et al (2008) Tracking and orbit determination performance of the GRAS instrument on MetOp-A. GPS Solut 12:289–299. doi:10.1007/s10291-008-0091-2

    Article  Google Scholar 

  • Schreiner W, Sokolvskiy SV, Rocken C et al (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966. doi:10.1029/1999RS900034

    Article  Google Scholar 

  • Schreiner W, Rocken C, Sokolovskiy et al. (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34(4):L04808(1–5)

  • Stolle C, Jakowski N, Schlegel K et al (2004) Comparison of high latitude electron density profiles obtained with the GPS radio occultation technique and EISCAT measurements. Ann Geophys 22(6):2015–2028

    Article  Google Scholar 

  • Straus P (2005) Ionospheric climatology derived from GPS occultation observations made by the ionospheric occultation experiments. GPS Solut 9:164–173. doi:10.1007/s10291-005-0145-7

    Article  Google Scholar 

  • Straus PR, Anderson PC, Danaher JE (2003) GPS occultation sensor observations of ionospheric scintillation. Geophys Res Lett 30(8):1436. doi:10.1029/2002GL016503

    Article  Google Scholar 

  • Syndergaard S, Schreiner WS, Rocken C, Hunt DC, Dymond KF (2006) Preparing for COSMIC: inversion and analysis of ionospheric data products. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and climate: studies by occultation methods. Springer, Berlin, pp 137–146

  • Tsai LC, Tsai WH, Schreiner WS et al (2001) Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planets Space 53:193–205

    Google Scholar 

  • Wickert J et al (2001) Atmosphere sounding by GPS ratio occultation: first results from CHAMP. Geophys Res Lett 28:3263–3266. doi:10.1029/2001GL013117

    Article  Google Scholar 

  • Zhang XJ, Hoeg P, Larsen GB et al (2002) Preliminary results of ionospheric electron density obtained from Oersted/GPS occultation and grounded radar joint observation. GNSS World China 25(3):1–5 in Chinese

    Google Scholar 

Download references

Acknowledgments

The IGS provided the GPS orbit data. This research was supported by grants 40204011 from Chinese Natural Science Foundation and KGCX3-SW-408 from the Chinese Sciences of Academy. The authors thank the two anonymous referees for their advices to improve this paper, and thank Dr. Alfred Leick for his help to improve the English in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Hu, X., Gong, X. et al. Analysis of inversion errors of ionospheric radio occultation. GPS Solut 13, 231–239 (2009). https://doi.org/10.1007/s10291-008-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-008-0116-x

Keywords

Navigation