Skip to main content
Log in

Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms

  • Invited Survey
  • Published:
4OR Aims and scope Submit manuscript

Abstract

This is the second part of a survey on the infinite group problem, an infinite-dimensional relaxation of integer linear optimization problems introduced by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled Some continuous functions related to corner polyhedra I, II (Math Program 3:23–85, 1972a; Math Program 3:359–389, 1972b). The survey presents the infinite group problem in the modern context of cut generating functions. It focuses on the recent developments, such as algorithms for testing extremality and breakthroughs for the k-row problem for general \(k\ge 1\) that extend previous work on the single-row and two-row problems. The survey also includes some previously unpublished results; among other things, it unveils piecewise linear extreme functions with more than four different slopes. An interactive companion program, implemented in the open-source computer algebra package Sage, provides an updated compendium of known extreme functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The function is available in the Electronic Compendium (Zhou 2014) as gmic.

  2. See Definition 3.7 (Basu et al. 2015, Part I).

  3. See the definition in (3.1) (Basu et al. 2015, Part I).

  4. This is a superadditive pseudo-periodic function in the terminology of Richard et al. (2009).

  5. See Sect. 3.6 (Basu et al. 2015, Part I).

  6. The statement of Proposition 6.1 remains true for generalizations of sequential limits; for example, we may consider the convergence of nets of minimal functions.

  7. The sequence and its limit can be constructed using drlm_gj_2_slope_extreme_limit_to_ nonextreme.

  8. See, for example, Hunter and Nachtergaele (2001) for an introduction to Sobolev spaces.

  9. These parameters are collected in the list delta, which is an argument to the function bhk_irrational. The parameters are \(\mathbb Q\)-linearly independent for example when one parameter is rational, e.g., 1/200 , the other irrational, e.g., sqrt(2)/200 . When the irrational number is algebraic (for example, when it is constructed using square roots), the code will construct an appropriate real number field that is a field extension of the rationals. In this field, the computations are done in exact arithmetic.

  10. Such a sequence and the limit can be constructed using bhk_irrational_extreme_limit_to_ rational_nonextreme.

  11. This can also be done with a finite left derivative. Note that not all extreme functions have a finite left or right derivative at the origin. That is, there exist extreme functions that are discontinuous on both sides of the origin. See Table 4 for examples.

  12. The first n terms of such a sequence of \(\epsilon _i\) are generated by e = generate_example_e_ for_psi_n(n= n).

  13. The construction of \(\psi _n\) is furnished by h = psi_n_in_bccz_counterexample_ construction(e=e), where e is the list [ \(\epsilon _1, \dots , \epsilon _n\) ].

  14. The function can be created by h = bccz_counterexample(); however, h(x) can be exactly evaluated only on the set \(\bigcup _{i=0}^\infty \hbox {cl}X_i^-\) defined below; for other values, the function will return an approximation.

  15. In fact, if \(\mu ^- < 1\), then \(\psi \) is actually Lipschitz continuous and thus absolutely continuous and hence almost everywhere differentiable. The convergence then holds even in the sense of the space \(W^{1,1}_{\mathrm {loc}}(\mathbb R)\).

  16. If h is the function \(\pi \), e.g., after typing h = dg_2_step_mir(), then the algorithm is invoked by typing extremality_test(h, show_plots=True). In the irrational case no proof of finite convergence of the procedure is known.

  17. Under these hypotheses, \(\pi \) is the continuous interpolation of \(\pi |_{\frac{1}{q}\mathbb Z}\).

  18. The function is available in the electronic compendium (Zhou 2014) as kzh_2q_example_1.

References

  • Aczél J, Dhombres JG (1989) Functional equations in several variables. Encylopedia of mathematics and its applications, vol. 31. Cambridge University Press, Cambridge

  • Aliprantis C, Border K (2006) Infinite dimensional analysis: a Hitchhiker’s guide, 2nd edn. Springer, Berlin

  • Andersen K, Louveaux Q, Weismantel R, Wolsey L (2007) Inequalities from two rows of a simplex tableau. In: Fischetti M, Williamson D (eds) Integer programming and combinatorial optimization. Proceedings of the 12th international IPCO conference, Ithaca, NY, USA, 25–27 June 2007. Lecture notes in computer science, vol 4513, Springer, Berlin, Heidelberg, pp 1–15. doi:10.1007/978-3-540-72792-7_1

  • Aráoz J, Evans L, Gomory RE, Johnson EL (2003) Cyclic group and knapsack facets. Math Program Ser B 96:377–408

    Article  Google Scholar 

  • Averkov G, Basu A (2014) On the unique-lifting property. In: Lee J, Vygen J (eds) Integer programming and combinatorial optimization. Lecture notes in computer science, vol 8494, pp 76–87. Springer. doi:10.1007/978-3-319-07557-0_7

  • Balas E (1971) Intersection cuts—a new type of cutting planes for integer programming. Oper Res 19:19–39

    Article  Google Scholar 

  • Balas E (1975) Facets of the knapsack polytope. Math Program 8(1):146–164

    Article  Google Scholar 

  • Balas E, Jeroslow RG (1980) Strengthening cuts for mixed integer programs. Eur J Oper Res 4(4):224–234. doi:10.1016/0377-2217(80)90106-X

    Article  Google Scholar 

  • Balas E, Ceria S, Cornuéjols G (1993) A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math Program 58(1–3):295–324

    Article  Google Scholar 

  • Balas E, Ceria S, Cornuéjols G (1996a) Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manag Sci 42(9):1229–1246

    Article  Google Scholar 

  • Balas E, Ceria S, Cornuéjols G, Natraj NR (1996b) Gomory cuts revisited. Oper Res Lett 19(1):1–9

    Article  Google Scholar 

  • Basu A, Conforti M, Cornuéjols G, Zambelli G (2010a) Maximal lattice-free convex sets in linear subspaces. Math Oper Res 35:704–720

  • Basu A, Conforti M, Cornuéjols G, Zambelli G (2010b) Minimal inequalities for an infinite relaxation of integer programs. SIAM J Discrete Math 24:158–168. doi:10.1137/090756375

  • Basu A, Cornuéjols G, Köppe M (2012a) Unique minimal liftings for simplicial polytopes. Math Oper Res 37(2):346–355. doi:10.1287/moor.1110.0536

    Article  Google Scholar 

  • Basu A, Conforti M, Cornuéjols G, Zambelli G (2012b) A counterexample to a conjecture of Gomory and Johnson. Math Program Ser A 133(1–2):25–38. doi:10.1007/s10107-010-0407-1

    Article  Google Scholar 

  • Basu A, Hildebrand R, Köppe M (2013a) Equivariant perturbation in Gomory and Johnson’s infinite group problem. II. The unimodular two-dimensional case. In: Goemans M, Correa J (eds) Integer programming and combinatorial optimization. Lecture notes in computer science, vol 7801. Springer, pp 62–73. doi:10.1007/978-3-642-36694-9_6

  • Basu A, Hildebrand R, Köppe M, Molinaro M (2013b) A (\(k + 1\))-slope theorem for the k-dimensional infinite group relaxation. SIAM J Optim 23(2):1021–1040. doi:10.1137/110848608

  • Basu A, Campêlo M, Conforti M, Cornuéjols G, Zambelli G (2013c) Unique lifting of integer variables in minimal inequalities. Math Program 141(1–2):561–576

    Article  Google Scholar 

  • Basu A, Hildebrand R, Köppe M (2014a) Equivariant perturbation in Gomory and Johnson’s infinite group problem. I. The one-dimensional case. Math Oper Res 40(1):105–129. doi:10.1287/moor.2014.0660

  • Basu A, Hildebrand R, Köppe M (2014b) Equivariant perturbation in Gomory and Johnson’s infinite group problem. III. Foundations for the k-dimensional case and applications to k \(=\) 2. arXiv:1403.4628 [math.OC]

  • Basu A, Hildebrand R, Köppe M (2014c) Equivariant perturbation in Gomory and Johnson’s infinite group problem. IV. The general unimodular two-dimensional case

  • Basu A, Hildebrand R, Köppe M (2015) Light on the infinite group relaxation I: foundations and taxonomy. 4OR-Q J Oper Res. doi:10.1007/s10288-015-0292-9

  • Bixby RE, Fenelon M, Gu Z, Rothberg E, Wunderling R (2004) Mixed integer programming: a progress report. In: Grötschel M (ed) The sharpest cut, MPS-SIAM series on optimization, Philadelphia, pp 309–325, ISBN 0-89871-552-0

  • Borozan V, Cornuéjols G (2009) Minimal valid inequalities for integer constraints. Math Oper Res 34:538–546. doi:10.1287/moor.1080.0370

    Article  Google Scholar 

  • Chen K (2011) Topics in group methods for integer programming. Ph.D. thesis, Georgia Institute of Technology

  • Chvátal V (1975) On certain polytopes associated with graphs. J Comb Theory Ser B 18(2):138–154

    Article  Google Scholar 

  • Conforti M, Cornuéjols G, Zambelli G (2011a) Corner polyhedra and intersection cuts. Surv Oper Res Manage Sci 16:105–120

    Google Scholar 

  • Conforti M, Cornuéjols G, Zambelli G (2011b) A geometric perspective on lifting. Oper Res 59(3):569–577. doi:10.1287/opre.1110.0916

    Article  Google Scholar 

  • Conforti M, Cornuéjols G, Daniilidis A, Lemaréchal C, Malick J (2013) Cut-generating functions and S-free sets. Math Oper Res 40(2):253–275. doi:10.1287/moor.2014.0670

    Google Scholar 

  • Cornuéjols G (2007) Revival of the Gomory cuts in the 1990s. Ann Oper Res 149(1):63–66

    Article  Google Scholar 

  • Cornuéjols G, Pulleyblank WR (1982) The travelling salesman polytope and \(\{0, 2\}\)-matchings. North-Holland Math Stud 66:27–55

    Article  Google Scholar 

  • Cornuéjols G, Molinaro M (2013) A 3-slope theorem for the infinite relaxation in the plane. Math Program 142(1–2):83–105. doi:10.1007/s10107-012-0562-7

    Article  Google Scholar 

  • Cornuéjols G, Naddef D, Pulleyblank WR (1983) Halin graphs and the travelling salesman problem. Math Program 26(3):287–294

    Article  Google Scholar 

  • Cornuéjols G, Fonlupt J, Naddef D (1985) The traveling salesman problem on a graph and some related integer polyhedra. Math Program 33(1):1–27

    Article  Google Scholar 

  • Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. J Oper Res Soc Am 2(4):393–410

    Google Scholar 

  • Dash S, Günlük O (2006) Valid inequalities based on simple mixed-integer sets. Math Program 105:29–53. doi:10.1007/s10107-005-0599-y

    Article  Google Scholar 

  • Dey SS, Richard J-PP (2008) Facets of two-dimensional infinite group problems. Math Oper Res 33(1):140–166. doi:10.1287/moor.1070.0283

    Article  Google Scholar 

  • Dey SS, Richard J-PP (2010) Relations between facets of low- and high-dimensional group problems. Math Program 123(2):285–313. doi:10.1007/s10107-009-0303-8

    Article  Google Scholar 

  • Dey SS, Wolsey LA (2010a) Constrained infinite group relaxations of MIPs. SIAM J Optim 20(6):2890–2912

  • Dey SS, Wolsey LA (2010b) Two row mixed-integer cuts via lifting. Math Program 124:143–174

  • Dey SS, Richard J-PP, Li Y, Miller LA (2010) On the extreme inequalities of infinite group problems. Math Program 121(1):145–170. doi:10.1007/s10107-008-0229-6

    Article  Google Scholar 

  • Gomory RE (1958) Outline of an algorithm for integer solutions to linear programs. Bull Am Math Soc 64:275–278

    Article  Google Scholar 

  • Gomory RE (1960) An algorithm for the mixed integer problem, Technical report RM-2597-PR, The RAND Corporation, Santa Monica, CA

  • Gomory RE (1963) An algorithm for integer solutions to linear programs. Recent Adv Math Program 64:260–302

    Google Scholar 

  • Gomory RE (1965) On the relation between integer and noninteger solutions to linear programs. Proc Natl Acad Sci USA 53(2):260

    Article  Google Scholar 

  • Gomory RE (1969) Some polyhedra related to combinatorial problems. Linear Algebra Appl 2(4):451–558

    Article  Google Scholar 

  • Gomory RE (2007) The atoms of integer programming. Ann Oper Res 149(1):99–102

    Article  Google Scholar 

  • Gomory RE, Johnson EL (1972a) Some continuous functions related to corner polyhedra, I. Math Program 3:23–85. doi:10.1007/BF01584976

  • Gomory RE, Johnson EL (1972b) Some continuous functions related to corner polyhedra, II. Math Program 3:359–389. doi:10.1007/BF01585008

  • Gomory RE, Johnson EL, Evans L (2003) Corner polyhedra and their connection with cutting planes. Math Program 96(2):321–339

    Article  Google Scholar 

  • Gomory RE, Johnson EL (2003) T-space and cutting planes. Math Program 96:341–375. doi:10.1007/s10107-003-0389-3

    Article  Google Scholar 

  • Grötschel M, Padberg MW (1979a) On the symmetric travelling salesman problem I: inequalities. Math Program 16(1):265–280

    Article  Google Scholar 

  • Grötschel M, Padberg MW (1979b) On the symmetric travelling salesman problem II: lifting theorems and facets. Math Program 16(1):281–302

    Article  Google Scholar 

  • Grötschel M, Padberg MW (1985) Polyhedral theory. In: Lawler EL, Lenstra JK, Kan AHGR, Shmoys DB (eds) The traveling salesman problem. Wiley, Chichester, NY, pp 251–305

    Google Scholar 

  • Grötschel M, Pulleyblank WR (1986) Clique tree inequalities and the symmetric traveling salesman problem. Math Oper Res 11:537–569

    Article  Google Scholar 

  • Grötschel M, Nemhauser GL (2008) George Dantzig’s contributions to integer programming. Discrete Optim 5(2):168–173. doi:10.1016/j.disopt.2007.08.003 In Memory of George B. Dantzig

    Article  Google Scholar 

  • Hong CY, Köppe M, Zhou Y (2014) Sage program for computation and experimentation with the \(1\)-dimensional Gomory-Johnson infinite group problem. https://github.com/mkoeppe/infinite-group-relaxation-code

  • Hunter JK, Nachtergaele B (2001) Applied analysis. World Scientific, ISBN 978-9-812-70543-3

  • Johnson EL (1974) On the group problem for mixed integer programming. Math Program Study 2:137–179

    Article  Google Scholar 

  • Kianfar K, Fathi Y (2009) Generalized mixed integer rounding inequalities: facets for infinite group polyhedra. Math Program 120:313–346

    Article  Google Scholar 

  • Köppe M, Zhou Y (2015a) An electronic compendium of extreme functions for the Gomory–Johnson infinite group problem. Oper Res Lett 43(4):438–444. doi:10.1016/j.orl.2015.06.004

  • Köppe M, Zhou Y (2015b) New computer-based search strategies for extreme functions of the Gomory–Johnson infinite group problem. arXiv:1506.00017 [math.OC]

  • Letchford AN, Lodi A (2002) Strengthening Chvátal-Gomory cuts and Gomory fractional cuts. Oper Res Lett 30(2):74–82. doi:10.1016/S0167-6377(02)00112-8

    Article  Google Scholar 

  • Nemhauser GL, Trotter LE Jr (1974) Properties of vertex packing and independence system polyhedra. Math Program 6(1):48–61

    Article  Google Scholar 

  • Padberg MW (1973) On the facial structure of set packing polyhedra. Math Program 5(1):199–215

    Article  Google Scholar 

  • Richard J-PP, Dey SS (2010) The group-theoretic approach in mixed integer programming. In: Jünger M, Liebling TM, Naddef D, Nemhauser GL, Pulleyblank WR, Reinelt G, Rinaldi G, Wolsey LA, (eds) 50 years of integer programming 1958–2008. Springer, Berlin, Heidelberg (2010), pp 727–801. doi:10.1007/978-3-540-68279-0_19, ISBN 978-3-540-68274-5

  • Richard J-PP, Li Y, Miller LA (2009) Valid inequalities for MIPs and group polyhedra from approximate liftings. Math Program 118(2):253–277. doi:10.1007/s10107-007-0190-9

    Article  Google Scholar 

  • Stein WA et al (2015) Sage Mathematics Software (Version 6.6). The Sage Development Team. http://www.sagemath.org

  • Trotter LE Jr (1975) A class of facet producing graphs for vertex packing polyhedra. Discrete Math 12(4):373–388

    Article  Google Scholar 

  • Wolsey LA (1975) Faces for a linear inequality in 0–1 variables. Math Program 8(1):165–178

    Article  Google Scholar 

  • Zhou Y (2014) Electronic compendium of extreme functions for the \(1\)-row Gomory–Johnson infinite group problem. https://github.com/mkoeppe/infinite-group-relaxation-code/

Download references

Acknowledgments

Thanks go to Yuan Zhou for compiling the electronic compendium of extreme functions in Zhou (2014), and Chun Yu Hong and Yuan Zhou for their work on the software (Hong et al. 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Köppe.

Additional information

The authors gratefully acknowledge partial support from the National Science Foundation through grants DMS-0914873 (R. Hildebrand, M. Köppe) and DMS-1320051 (M. Köppe).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Hildebrand, R. & Köppe, M. Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms. 4OR-Q J Oper Res 14, 107–131 (2016). https://doi.org/10.1007/s10288-015-0293-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-015-0293-8

Keywords

Navigation