Skip to main content

Advertisement

Log in

Merit functions: a bridge between optimization and equilibria

  • Invited Survey
  • Published:
4OR Aims and scope Submit manuscript

Abstract

In the last decades, many problems involving equilibria, arising from engineering, physics and economics, have been formulated as variational mathematical models. In turn, these models can be reformulated as optimization problems through merit functions. This paper aims at reviewing the literature about merit functions for variational inequalities, quasi-variational inequalities and abstract equilibrium problems. Smoothness and convexity properties of merit functions and solution methods based on them will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The convergence is said global if it does not depend on the choice of the starting point.

  2. A sequence \(\{x^k\}\) is said to be convergent to \(\bar{x}\) with rate of convergence equal to \(r\) if

    $$\begin{aligned} \limsup _{k\rightarrow +\infty }\frac{\Vert x^{k+1} -\bar{x}\Vert }{\Vert x^{k} -\bar{x}\Vert ^r}=\gamma \in (0,+\infty ). \end{aligned}$$

    If \(r=1\) and \(\gamma \in (0,1)\), then the convergence is said to be linear, if \(r>1\), then the convergence is said to be superlinear, and, in particular, if \(r=2\), the convergence is said to be quadratic.

  3. The Armijo inexact line search along the direction \(d^k\) consists in finding the smallest non negative integer \(m\) such that

    $$\begin{aligned} p_{\alpha }(x^k+\beta ^m d^k) \le p_{\alpha }(x^k) - \sigma \,\beta ^m \Vert d^k\Vert ^2, \end{aligned}$$

    where \(\beta ,\sigma \in (0,1)\) are parameters, and then setting \(x^{k+1}:=x^k+\beta ^m d^k\).

  4. \(\delta _C\) is defined as follows: \(\delta _C(x)=0\) if \(x \in C\) and \(\delta _C(x)=+\infty \) otherwise.

References

  • Altangerel L, Bot RI, Wanka G (2007) On the construction of gap functions for variational inequalities via conjugate duality. Asia Pac J Oper Res 24:353–371

    Article  Google Scholar 

  • Altangerel L, Bot RI, Wanka G (2006) On gap functions for equilibrium problems via Fenchel duality. Pac J Optim 2:667–678

    Google Scholar 

  • Altman E, Wynter L (2004) Equilibrium, games, and pricing in transportation and telecommunication networks. Netw Spat Econ 4:7–21

    Article  Google Scholar 

  • Anselmi J, Ardagna D, Passacantando M (2013) Generalized Nash equilibria for SaaS/PaaS clouds. Eur J Oper Res. doi:10.1016/j.ejor.2013.12.007

  • Ardagna D, Panicucci B, Passacantando M (2011) A game theoretic formulation of the service provisioning problem in cloud systems. In: Proceedings of the 20th international conference on World Wide Web. Hyderabad, India, pp 177–186

  • Ardagna D, Panicucci B, Passacantando M (2013) Generalized Nash equilibria for the service provisioning problem in cloud systems. IEEE T Serv Comput 6:429–442

    Article  Google Scholar 

  • Auchmuty G (1989) Variational principles for variational inequalities. Numer Funct Anal Optim 10:863–874

    Article  Google Scholar 

  • Auslender A (1976) Optimisation. Méthodes numériques, Masson, Paris

    Google Scholar 

  • Aussel D, Correa R, Marechal M (2011) Gap functions for quasivariational inequalities and generalized Nash equilibrium problems. J Optim Theory Appl 151:474–488

    Article  Google Scholar 

  • Baiocchi C, Capelo A (1984) Variational and quasivariational inequalities: applications to free boundary problems. Wiley, New York

    Google Scholar 

  • Bensoussan A, Goursat M, Lions J-L (1973) Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C R Acad Sci Paris Sér A 276:1279–1284

    Google Scholar 

  • Bensoussan A, Lions J-L (1973) Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C R Acad Sci Paris Sér A 276:1189–1192

    Google Scholar 

  • Bigi G, Castellani M, Pappalardo M (2009) A new solution method for equilibrium problems. Optim Methods Softw 24:895–911

    Article  Google Scholar 

  • Bigi G, Castellani M, Pappalardo M, Passacantando M (2013) Existence and solution methods for equilibria. Eur J Oper Res 227:1–11

    Article  Google Scholar 

  • Bigi G, Panicucci B (2010) A successive linear programming algorithm for nonsmooth monotone variational inequalities. Optim Methods Softw 25:29–35

    Article  Google Scholar 

  • Bigi G, Passacantando M (2012) Gap functions and penalization for solving equilibrium problems with nonlinear constraints. Comput Optim Appl 53:323–346

    Article  Google Scholar 

  • Bigi G, Passacantando M (2013a) Descent and penalization techniques for equilibrium problems with nonlinear constraints. J Optim Theory Appl. doi:10.1007/s10957-013-0473-7

  • Bigi G, Passacantando M (2013b) D-gap functions and descent techniques for solving equilibrium problems. Technical report TR-13-15 del Dipartimento di Informatica, University of Pisa

  • Blum E, Oettli W (1994) From optimization and variational inequalities to equilibrium problems. Math Stud 63:123–145

    Google Scholar 

  • Cavazzuti E, Pappalardo M, Passacantando M (2002) Nash equilibria, variational inequalities, and dynamical systems. J Optim Theory Appl 114:491–506

    Article  Google Scholar 

  • Chadli O, Konnov IV, Yao J-C (2004) Descent methods for equilibrium problems in a Banach space. Comput Math Appl 48:609–616

    Article  Google Scholar 

  • Chan D, Pang J-S (1982) The generalized quasi-variational inequality problem. Math Oper Res 7:211–222

    Article  Google Scholar 

  • Cherugondi C (2013) A note on D-gap functions for equilibrium problems. Optimization 62:211–226

    Article  Google Scholar 

  • Dafermos S (1980) Traffic equilibrium and variational inequalities. Transp Sci 14:42–54

    Article  Google Scholar 

  • Danskin JM (1966) The theory of max-min, with applications. SIAM J Apple Math 14: 641–664

    Google Scholar 

  • Di Lorenzo D, Passacantando M, Sciandrone M (2013) A convergent inexact solution method for equilibrium problems. Optim Methods Softw. doi:10.1080/10556788.2013.796376

  • Dietrich H (2001) Optimal control problems for certain quasivariational inequalities. Optimization 49:67–93

    Article  Google Scholar 

  • Drouet L, Haurie A, Moresino F, Vial J-P, Vielle M, Viguier L (2008) An oracle based method to compute a coupled equilibrium in a model of international climate policy. Comput Manag Sci 5:119–140

    Article  Google Scholar 

  • Eaves BC (1971) On the basic theorem of complementarity. Math Program 1:68–75

    Article  Google Scholar 

  • Facchinei F, Kanzow C (2007) Generalized Nash equilibrium problems. 4OR 5:173–210

    Google Scholar 

  • Facchinei F, Kanzow C, Sagratella S (2013a) Solving quasi-variational inequalities via their KKT conditions. Math Program. doi:10.1007/s10107-013-0637-0

  • Facchinei F, Kanzow C, Sagratella S (2013b) QVILIB: a library of quasi-variational inequality test problems. Pac J Optim 9:225–250

    Google Scholar 

  • Facchinei F, Pang J-S (2003) Finite-dimensional variational inequalities and complementarity problems. Springer, New York

    Google Scholar 

  • Ferris MC, Pang J-S (1997) Engineering and economic applications of complementarity problems. SIAM Rev 39:669–713

    Article  Google Scholar 

  • Fischer A, Jang H (2001) Merit functions for complementarity and related problems: a survey. Comput Optim Appl 17:159–182

    Article  Google Scholar 

  • Forgó F, Fülöp J, Prill M (2005) Game theoretic models for climate change negotiations. Eur J Oper Res 160:252–267

    Article  Google Scholar 

  • Fukushima M (1992) Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math Program 53:99–110

    Article  Google Scholar 

  • Fukushima M (2007) A class of gap functions for quasi-variational inequality problems. J Ind Manag Optim 3:165–171

    Article  Google Scholar 

  • Giannessi F (1995) Separation of sets and gap functions for quasi-variational inequalities. In: Giannessi F, Maugeri A (eds) Variational inequalities and network equilibrium problems. Plenum, pp 101–121

  • Giannessi F (1998) On Minty variational principle. In Giannessi F, Komlósi S, Rapcsák T (eds) New trends in mathematical programming. Kluwer, Berlin, pp 93–99

  • Gupta R, Mehra A (2012) Gap functions and error bounds for quasivariational inequalities. J Glob Optim 53:737–748

    Article  Google Scholar 

  • Harker PT, Pang J-S (1990) Finite-dimensional variational inequalities and nonlinear complementarity problem: a survey of theory, algorithms and applications. Math Program 48:161–220

    Article  Google Scholar 

  • Harms N, Kanzow C, Stein O (2013) Smoothness properties of a regularized gap function for quasi-variational inequalities. Optim Methods Softw. doi:10.1080/10556788.2013.841694

    Google Scholar 

  • Hartman P, Stampacchia G (1966) On some nonlinear elliptic differential functional equations. Acta Math 115:153–188

    Article  Google Scholar 

  • Huang LR, Ng KF (2005) Equivalent optimization formulations and error bounds for variational inequality problems. J Optim Theory Appl 125:299–314

    Article  Google Scholar 

  • Kanzow C, Fukushima M (1998a) Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities. Math Program 83:55–87

    Google Scholar 

  • Kanzow C, Fukushima M (1998b) Solving box constrained variational inequalities by using the natural residual with D-gap function globalization. Oper Res Lett 23:45–51

    Article  Google Scholar 

  • Konnov IV (2007) On variational inequalities for auction market problems. Optim Lett 1:155–162

    Article  Google Scholar 

  • Konnov IV (2008a) Variational inequalities for modeling auction markets with price mappings. Open Oper Res J 2:29–37

    Google Scholar 

  • Konnov IV (2008b) Spatial equilibrium problems for auction-type systems. Russian Math 52:30–44

    Google Scholar 

  • Konnov IV, Pinyagina OV (2003a) Descent method with respect to the gap function for nonsmooth equilibrium problems. Russian Math 47:67–73

    Google Scholar 

  • Konnov IV, Pinyagina OV (2003b) D-gap functions for a class of equilibrium problems in Banach spaces. Comput Methods Appl Math 3:274–286

    Article  Google Scholar 

  • Larsson T, Patriksson M (1994) A class of gap functions for variational inequalities. Math Program 64:53–79

    Article  Google Scholar 

  • Li G, Ng KF (2009) Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems. SIAM J Optim 20:667–690

    Article  Google Scholar 

  • Li G, Tang C, Wei Z (2010) Error bound results for generalized D-gap functions of nonsmooth variational inequality problems. J Comput Appl Math 233:2795–2806

    Article  Google Scholar 

  • Liu Z, Nagurney A (2007) Financial networks with intermediation and transportation network equilibria: a supernetwork equivalence and reinterpretation of the equilibrium conditions with computations. Comput Manag Sci 4:243–281

    Article  Google Scholar 

  • Mangasarian OL, Solodov MV (1993) Nonlinear complementarity as unconstrained and constrained minimization. Math Program 2:277–297

    Article  Google Scholar 

  • Marcotte P (1985) A new algorithm for solving variational inequalities with applications to traffic assignment problem. Math Program 33:339–351

    Article  Google Scholar 

  • Marcotte P (1987) Algorithms for the network oligopoly problem. J Oper Res Soc 38:1051–1065

    Google Scholar 

  • Marcotte P, Dussault JP (1987) A note on globally convergent Newton method for solving monotone variational inequalities. Oper Res Lett 6:273–284

    Google Scholar 

  • Marcotte P, Dussault JP (1989) A sequential linear programming algorithm for solving monotone variational inequalities. SIAM J Optim 27:1260-1278

    Google Scholar 

  • Marcotte P, Zhu D (1998) Weak sharp solutions of variational inequalities. SIAM J Optim 9:179–189

    Google Scholar 

  • Mastroeni G (1994) Some relations between duality theory for extremum problems and Variational Inequalities. Le Matematiche 49:295–304

    Google Scholar 

  • Mastroeni G (2003) Gap functions for equilibrium problems. J Global Optim 27:411–426

    Article  Google Scholar 

  • Mastroeni G (2005) Gap functions and descent methods for Minty variational inequality. In: Optimization and control with applications, Springer, US, p 529–547

  • Miller N, Ruszczynski A (2008) Risk-adjusted probability measures in portfolio optimization with coherent measures of risk. Eur J Oper Res 191:193–206

    Article  Google Scholar 

  • Minty GJ (1967) On the generalization of a direct method of the calculus of variations. Bull Am Math Soc 73:315–321

    Article  Google Scholar 

  • Mordukhovich BS, Outrata JV, Cervinka M (2007) Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets. Optimization 56:479–494

    Article  Google Scholar 

  • Murphy FH, Sherali HD, Soyster AL (1982) A mathematical programming approach for determining oligopolistic market equilibrium. Math Program 24:92–106

    Article  Google Scholar 

  • Nagurney A (1993) Network economics: a variational inequality approach. Kluwer, Dordrecht

    Book  Google Scholar 

  • Nagurney A (2010) Formulation and analysis of horizontal mergers among oligopolistic firms with insights into the merger paradox: a supply chain network perspective. Comput Manag Sci 7:377–406

    Article  Google Scholar 

  • Ng KF, Tan LL (2007a) D-gap functions for nonsmooth variational inequality problems. J Optim Theory Appl 133:77–97

    Google Scholar 

  • Ng KF, Tan LL (2007b) Error bounds of regularized gap functions for nonsmooth variational inequality problems. Math Program 110:405–429

    Google Scholar 

  • Nguyen S, Dupuis C (1984) An efficient method for computing traffic equilibria in networks with asymmetric transportation costs. Transp Sci 18:185–202

    Article  Google Scholar 

  • Nikaido H, Isoda K (1955) Note on noncooperative convex games. Pac J Math 5:807–815

    Article  Google Scholar 

  • Pang J-S, Scutari G, Palomar DP, Facchinei F (2010) Design of cognitive radio systems under temperature-interference constraints: a variational inequality approach. IEEE T Signal Process 58:3251–3271

    Article  Google Scholar 

  • Pappalardo M, Passacantando M (2002) Stability for equilibrium problems: from variational inequalities to dynamical systems. J Optim Theory Appl 113:567–582

    Article  Google Scholar 

  • Pappalardo M, Passacantando M (2004) Gap functions and Lyapunov functions. J Global Optim 28:379–385

    Article  Google Scholar 

  • Panicucci B, Pappalardo M, Passacantando M (2009) A globally convergent descent method for nonsmooth variational inequalities. Comput Optim Appl 43:197–211

    Article  Google Scholar 

  • Patriksson M (1994) The traffic assignment problem: models and methods. VSP, Utrecht

    Google Scholar 

  • Peng J-M (1997) Equivalence of variational inequality problems to unconstrained minimization. Math Program 78:347–355

    Google Scholar 

  • Peng J-M, Fukushima M (1999) A hybrid Newton method for solving the variational inequality problem via the D-gap function. Math Program 86:367–386

    Article  Google Scholar 

  • Peng J-M, Kanzow C, Fukushima M (1999) A hybrid Josephy-Newton method for solving box constrained variational inequality problems via the D-gap function. Optim Methods Softw 10:687–710

    Article  Google Scholar 

  • Peng J-M, Yuan Y (1997) Unconstrained methods for generalized complementarity problems. J Comput Math 15:253–264

    Google Scholar 

  • Qu B, Wang CY, Zhang JZ (2003) Convergence and error bound of a method for solving variational inequality problems via the generalized D-gap function. J Optim Theory Appl 119:535–552

    Article  Google Scholar 

  • Quoc TD, Muu LD (2012) Iterative methods for solving monotone equilibrium problems via dual gap functions. Comput Optim Appl 51:709–728

    Article  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Google Scholar 

  • Scutari G, Palomar DP, Barbarossa S (2010) Competitive optimization of cognitive radio MIMO systems via game theory. Convex optimization in signal processing and communications. Cambridge University Press, Cambridge, pp 387–442

    Google Scholar 

  • Solodov MV, Tseng P (2000) Some methods based on the D-gap function for solving monotone variational inequalities. Comput Optim Appl 17:255–277

    Article  Google Scholar 

  • Sun D, Fukushima M, Qi L (1997) A computable generalized Hessian of the D-gap function and Newton-type methods for variational inequality problems. In: Complementarity and variational problems, SIAM, pp 452–473

  • Taji K (2008) On gap functions for quasi-variational inequalities. Abstr Appl Anal. Article ID 531361, p 7

    Google Scholar 

  • Taji K, Fukushima M (1996) A new merit function and a successive quadratic programming algorithm for variational inequality problems. SIAM J Optim 6:704–713

    Article  Google Scholar 

  • Taji K, Fukushima M, Ibaraki T (1993) A globally convergent Newton method for solving strongly monotone variational inequalities. Math Program 58:369–383

    Article  Google Scholar 

  • Tan LL (2007) Regularized gap functions for nonsmooth variational inequality problems. J Math Anal Appl 334:1022–1038

    Article  Google Scholar 

  • Wardrop JG (1952) Some theoretical aspects of road traffic research. Proceedings of the Institute of Civil Engineers, vol 1, pp 325–378

  • Wu JH, Florian M, Marcotte P (1993) A general descent framework for the monotone variational inequality problem. Math Program 61:281–300

    Article  Google Scholar 

  • Yamashita N, Fukushima M (1997) Equivalent unconstrained minimization and global error bounds for variational inequality problems. SIAM J Contr Optim 35:273–284

    Article  Google Scholar 

  • Yamashita N, Taji K, Fukushima M (1997) Unconstrained optimization reformulations of variational inequality problems. J Optim Theory Appl 92:439–456

    Article  Google Scholar 

  • Zhang L, Han JY (2009) Unconstrained optimization reformulations of equilibrium problems. Acta Math Sin 25:343–354

    Article  Google Scholar 

  • Zhang J, Wan C, Xiu N (2003) The dual gap function for variational inequalities. Appl Math Optim 48:129-148

    Google Scholar 

  • Zhang L, Wu S-Y (2009) An algorithm based on the generalized D-gap function for equilibrium problems. J Comput Appl Math 231:403–411

    Article  Google Scholar 

  • Zhao L, Nagurney A (2008) A network equilibrium framework for internet advertising: models, qualitative analysis, and algorithms. Eur J Oper Res 187:456–472

    Article  Google Scholar 

  • Zhu DL, Marcotte P (1993) Modified descent methods for solving the monotone variational inequality problem. Oper Res Lett 14:111–120

    Article  Google Scholar 

  • Zhu DL, Marcotte P (1994) An extended descent framework for variational inequalities. J Optim Theory Appl 80:349–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Pappalardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappalardo, M., Mastroeni, G. & Passacantando, M. Merit functions: a bridge between optimization and equilibria. 4OR-Q J Oper Res 12, 1–33 (2014). https://doi.org/10.1007/s10288-014-0256-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-014-0256-5

Keywords

Mathematics Subject Classification

Navigation