Skip to main content
Log in

Utility of Artificial Intelligence for Real-Time Anatomical Landmark Identification in Ultrasound-Guided Thoracic Paravertebral Block

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Thoracic paravertebral block (TPVB) is a common method of inducing perioperative analgesia in thoracic and abdominal surgery. Identifying anatomical structures in ultrasound images is very important especially for inexperienced anesthesiologists who are unfamiliar with the anatomy. Therefore, our aim was to develop an artificial neural network (ANN) to automatically identify (in real-time) anatomical structures in ultrasound images of TPVB. This study is a retrospective study using ultrasound scans (both video and standard still images) that we acquired. We marked the contours of the paravertebral space (PVS), lung, and bone in the TPVB ultrasound image. Based on the labeled ultrasound images, we used the U-net framework to train and create an ANN that enabled real-time identification of important anatomical structures in ultrasound images. A total of 742 ultrasound images were acquired and labeled in this study. In this ANN, the Intersection over Union (IoU) and Dice similarity coefficient (DSC or Dice coefficient) of the paravertebral space (PVS) were 0.75 and 0.86, respectively, the IoU and DSC of the lung were 0.85 and 0.92, respectively, and the IoU and DSC of the bone were 0.69 and 0.83, respectively. The accuracies of the PVS, lung, and bone were 91.7%, 95.4%, and 74.3%, respectively. For tenfold cross validation, the median interquartile range for PVS IoU and DSC was 0.773 and 0.87, respectively. There was no significant difference in the scores for the PVS, lung, and bone between the two anesthesiologists. We developed an ANN for the real-time automatic identification of thoracic paravertebral anatomy. The performance of the ANN was highly satisfactory. We conclude that AI has good prospects for use in TPVB. Clinical registration number: ChiCTR2200058470 (URL: http://www.chictr.org.cn/showproj.aspx?proj=152839; registration date: 2022-04-09).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Geng Wang, upon reasonable request.

References

  1. Albrecht E, Chin KJ. Advances in regional anaesthesia and acute pain management: a narrative review. Anaesthesia. 2020 Jan;75 Suppl 1:e101-e110. https://doi.org/10.1111/anae.14868. PMID: 31903582.

    Article  PubMed  Google Scholar 

  2. Wardhan R. Update on paravertebral blocks. Curr Opin Anaesthesiol. 2015 Oct;28(5):588-92. https://doi.org/10.1097/ACO.0000000000000235. PMID: 26308511.

    Article  CAS  PubMed  Google Scholar 

  3. Page EA, Taylor KL. Paravertebral block in paediatric abdominal surgery-a systematic review and meta-analysis of randomized trials. Br J Anaesth. 2017 Feb;118(2):159-166. https://doi.org/10.1093/bja/aew387. PMID: 28100519.

    Article  CAS  PubMed  Google Scholar 

  4. Ardon AE, Lee J, Franco CD, Riutort KT, Greengrass RA. Paravertebral block: anatomy and relevant safety issues. Korean J Anesthesiol. 2020 Oct;73(5):394–400. https://doi.org/10.4097/kja.20065. Epub 2020 Mar 16. PMID: 32172551; PMCID: PMC7533185.

  5. Terkawi AS, Tsang S, Sessler DI, Terkawi RS, Nunemaker MS, Durieux ME, Shilling A. Improving analgesic efficacy and safety of thoracic paravertebral block for breast surgery: a mixed-effects meta-analysis. Pain Physician. 2015 Sep-Oct;18(5):E757–80. PMID: 26431130.

  6. Ramaswamy SM, Kuizenga MH, Weerink MAS, Vereecke HEM, Struys MMRF, Nagaraj SB. Novel drug-independent sedation level estimation based on machine learning of quantitative frontal electroencephalogram features in healthy volunteers. Br J Anaesth. 2019 Oct;123(4):479-487. https://doi.org/10.1016/j.bja.2019.06.004. Epub 2019 Jul 18. PMID: 31326088.

    Article  CAS  PubMed  Google Scholar 

  7. Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018 Oct;129(4):663-674. https://doi.org/10.1097/ALN.0000000000002300. PMID: 29894315.

    Article  PubMed  Google Scholar 

  8. Connor CW, Segal S. Accurate classification of difficult intubation by computerized facial analysis. Anesth Analg. 2011 Jan;112(1):84-93. https://doi.org/10.1213/ANE.0b013e31820098d6. Epub 2010 Nov 16. PMID: 21081769.

    Article  PubMed  Google Scholar 

  9. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020 Feb;132(2):379-394. https://doi.org/10.1097/ALN.0000000000002960. PMID: 31939856; PMCID: PMC7643051.

    Article  PubMed  Google Scholar 

  10. Bowness JS, Burckett-St Laurent D, Hernandez N, Keane PA, Lobo C, Margetts S, Moka E, Pawa A, Rosenblatt M, Sleep N, Taylor A, Woodworth G, Vasalauskaite A, Noble JA, Higham H. Assistive artificial intelligence for ultrasound image interpretation in regional anaesthesia: an external validation study. Br J Anaesth. 2023 Feb;130(2):217–225. https://doi.org/10.1016/j.bja.2022.06.031. Epub 2022 Aug 18. PMID: 35987706; PMCID: PMC9900723.

  11. Alkhatib M, Hafiane A, Vieyres P, Delbos A. Deep visual nerve tracking in ultrasound images. Comput Med Imaging Graph. 2019 Sep;76:101639. https://doi.org/10.1016/j.compmedimag.2019.05.007. Epub 2019 Jul 4. PMID: 31349184.

  12. Gungor I, Gunaydin B, Oktar SO, M Buyukgebiz B, Bagcaz S, Ozdemir MG, Inan G. A real-time anatomy ıdentification via tool based on artificial ıntelligence for ultrasound-guided peripheral nerve block procedures: an accuracy study. J Anesth. 2021 Aug;35(4):591–594. https://doi.org/10.1007/s00540-021-02947-3. Epub 2021 May 19. PMID: 34008072; PMCID: PMC8131172.

  13. Pesteie M, Lessoway V, Abolmaesumi P, Rohling RN. Automatic localization of the needle target for ultrasound-guided epidural injections. IEEE Trans Med Imaging. 2018 Jan;37(1):81-92. https://doi.org/10.1109/TMI.2017.2739110. Epub 2017 Aug 11. PMID: 28809679.

    Article  PubMed  Google Scholar 

  14. Lönnqvist PA, MacKenzie J, Soni AK, Conacher ID. Paravertebral blockade. Failure rate and complications. Anaesthesia. 1995 Sep;50(9):813-5. https://doi.org/10.1111/j.1365-2044.1995.tb06148.x. PMID: 7573876.

    Article  PubMed  Google Scholar 

  15. Karmakar MK. Thoracic paravertebral block. Anesthesiology. 2001 Sep;95(3):771-80. https://doi.org/10.1097/00000542-200109000-00033. PMID: 11575553.

    Article  CAS  PubMed  Google Scholar 

  16. Krediet AC, Moayeri N, van Geffen GJ, Bruhn J, Renes S, Bigeleisen PE, Groen GJ. Different approaches to ultrasound-guided thoracic paravertebral block: an illustrated review. Anesthesiology. 2015 Aug;123(2):459-74. https://doi.org/10.1097/ALN.0000000000000747. PMID: 26083767.

    Article  PubMed  Google Scholar 

  17. Shibata Y, Nishiwaki K. Ultrasound-guided intercostal approach to thoracic paravertebral block. Anesth Analg. 2009 Sep;109(3):996-7. https://doi.org/10.1213/ane.0b013e3181af7e7b. PMID: 19690285.

    Article  PubMed  Google Scholar 

  18. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, Vu TH, Sohn JH, Hwang S, Goo JM, Park CM. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019 Jan;290(1):218-228. https://doi.org/10.1148/radiol.2018180237. Epub 2018 Sep 25. PMID: 30251934.

    Article  PubMed  Google Scholar 

  19. Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer. 2021 Feb;124(4):686–696. https://doi.org/10.1038/s41416-020-01122-x. Epub 2020 Nov 18. PMID: 33204028; PMCID: PMC7884739.

  20. Connor CW. Artificial intelligence and machine learning in anesthesiology. Anesthesiology. 2019 Dec;131(6):1346-1359. https://doi.org/10.1097/ALN.0000000000002694. PMID: 30973516; PMCID: PMC6778496.

    Article  PubMed  Google Scholar 

  21. Mathis MR, Kheterpal S, Najarian K. Artificial intelligence for anesthesia: what the practicing clinician needs to know: more than black magic for the art of the dark. Anesthesiology. 2018 Oct;129(4):619-622. https://doi.org/10.1097/ALN.0000000000002384. PMID: 30080689; PMCID: PMC6148374.

    Article  PubMed  Google Scholar 

  22. Hetherington J, Lessoway V, Gunka V, Abolmaesumi P, Rohling R. SLIDE: automatic spine level identification system using a deep convolutional neural network. Int J Comput Assist Radiol Surg. 2017 Jul;12(7):1189-1198. https://doi.org/10.1007/s11548-017-1575-8. Epub 2017 Mar 30. PMID: 28361323.

    Article  PubMed  Google Scholar 

  23. Jain PK, Gupta S, Bhavsar A, Nigam A, Sharma N. Localization of common carotid artery transverse section in B-mode ultrasound images using faster RCNN: a deep learning approach. Med Biol Eng Comput. 2020 Mar;58(3):471-482. https://doi.org/10.1007/s11517-019-02099-3. Epub 2020 Jan 2. PMID: 31897798.

    Article  PubMed  Google Scholar 

  24. Smistad E, Johansen KF, Iversen DH, Reinertsen I. Highlighting nerves and blood vessels for ultrasound-guided axillary nerve block procedures using neural networks. J Med Imaging (Bellingham). 2018 Oct;5(4):044004. https://doi.org/10.1117/1.JMI.5.4.044004. Epub 2018 Nov 10. PMID: 30840734; PMCID: PMC6228309.

  25. Horng MH, Yang CW, Sun YN, Yang TH. DeepNerve: a new convolutional neural network for the localization and segmentation of the median nerve in ultrasound image sequences. Ultrasound Med Biol. 2020 Sep;46(9):2439-2452. https://doi.org/10.1016/j.ultrasmedbio.2020.03.017. Epub 2020 Jun 9. PMID: 32527593.

    Article  PubMed  Google Scholar 

  26. Huang C, Zhou Y, Tan W, Qiu Z, Zhou H, Song Y, Zhao Y, Gao S. Applying deep learning in recognizing the femoral nerve block region on ultrasound images. Ann Transl Med. 2019 Sep;7(18):453. https://doi.org/10.21037/atm.2019.08.61. PMID: 31700889; PMCID: PMC6803209.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Yang XY, Wang LT, Li GD, Yu ZK, Li DL, Guan QL, Zhang QR, Guo T, Wang HL, Wang YW. Artificial intelligence using deep neural network learning for automatic location of the interscalene brachial plexus in ultrasound images. Eur J Anaesthesiol. 2022 Sep 1;39(9):758-765. https://doi.org/10.1097/EJA.0000000000001720. Epub 2022 Jul 20. PMID: 35919026.

    Article  PubMed  Google Scholar 

  28. Tiyarattanachai T, Apiparakoon T, Marukatat S, Sukcharoen S, Geratikornsupuk N, Anukulkarnkusol N, Mekaroonkamol P, Tanpowpong N, Sarakul P, Rerknimitr R, Chaiteerakij R. Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images. PLoS One. 2021 Jun 8;16(6):e0252882. https://doi.org/10.1371/journal.pone.0252882. PMID: 34101764; PMCID: PMC8186767.

Download references

Funding

This study was funded by Beijing JST Research Funding (YGQ-202104).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research are done by Yaoping Zhao and Geng Wang. Nan Cai, Shaoqiang Zheng, and Hao Zhong acquired the data. Analysis and interpretation of the data are performed by Bo Zhang and Yan Zhou. Statistical analysis was assigned to Bo Zhang and Hao Zhong. Nan Cai obtained financing. Yaoping Zhao, Shaoqiang Zheng, and Qiang Zhang wrote the manuscript. Critical revision of the manuscript for intellectual content was assigned to Geng Wang, Yan Zhou, and Qiang Zhang. All authors read and approved the final draft.

Corresponding author

Correspondence to Geng Wang.

Ethics declarations

Ethics Approval

This study was approved by the Institutional Review Board of Beijing Jishuitan Hospital (IRB 202104–14).

Consent to Participate

Written informed consent was obtained from all patients participating in the trial.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 1 and 3.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zheng, S., Cai, N. et al. Utility of Artificial Intelligence for Real-Time Anatomical Landmark Identification in Ultrasound-Guided Thoracic Paravertebral Block. J Digit Imaging 36, 2051–2059 (2023). https://doi.org/10.1007/s10278-023-00851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00851-8

Keywords

Navigation