Skip to main content
Log in

State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Several neuroimaging processing applications consider skull stripping as a crucial pre-processing step. Due to complex anatomical brain structure and intensity variations in brain magnetic resonance imaging (MRI), an appropriate skull stripping is an important part. The process of skull stripping basically deals with the removal of the skull region for clinical analysis in brain segmentation tasks, and its accuracy and efficiency are quite crucial for diagnostic purposes. It requires more accurate and detailed methods for differentiating brain regions and the skull regions and is considered as a challenging task. This paper is focused on the transition of the conventional to the machine- and deep-learning-based automated skull stripping methods for brain MRI images. It is observed in this study that deep learning approaches have outperformed conventional and machine learning techniques in many ways, but they have their limitations. It also includes the comparative analysis of the current state-of-the-art skull stripping methods, a critical discussion of some challenges, model of quantifying parameters, and future work directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Purves et al., Eds., Neuroscience, 4th ed. Sunderland, MA, US: Sinauer Associates, 2008.

    Google Scholar 

  2. H. Blumenfeld, Neuroanatomy through Clinical Cases, 2nd ed. 2010.

  3. R. M. Quencer and W. G. Bradley, MR imaging of the brain: what constitutes the minimum acceptable capability?, AJNR. Am. J. Neuroradiol., vol. 22, no. 8, pp. 1449–50, 2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Cheour, Advantages of brain MRI, Radiol. Org, 2010.

  5. M. Ben Salah, I. Diaz, R. Greiner, P. Boulanger, B. Hoehn, and A. Murtha, Fully automated brain tumor segmentation using two mri modalities, in International Symposium on Visual Computing, 2013, pp. 30–39.

  6. Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, Deep learning for brain MRI segmentation: state of the art and future directions, J. Digit. Imaging, vol. 30, no. 4, pp. 449–459, 2017.

    PubMed  PubMed Central  Google Scholar 

  7. K. Kazemi and N. Noorizadeh, Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation, J. Biomed. Phys. Eng., vol. 4, no. 1, p. 13, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Chaddad and C. Tanougast, Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images, Brain informatics, vol. 3, no. 1, pp. 53–61, 2016.

    PubMed  PubMed Central  Google Scholar 

  9. R. Nilakant, H. P. Menon, and K. Vikram, A survey on advanced segmentation techniques for brain MRI image segmentation, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 4, pp. 1448–1456, 2017.

    Google Scholar 

  10. H. Huang, F. Meng, S. Zhou, F. Jiang, and G. Manogaran, Brain image segmentation based on FCM clustering algorithm and rough set, IEEE Access, vol. 7, pp. 12386–12396, 2019.

    Google Scholar 

  11. I. Despotović, B. Goossens, and W. Philips, MRI segmentation of the human brain: challenges, methods, and applications, Comput. Math. Methods Med., vol. 2015, 2015.

  12. A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, A survey of the recent architectures of deep convolutional neural networks, arXiv Prepr. arXiv1901.06032, 2019.

  13. F. Hosseini, H. Ebrahimpourkomleh, and M. KhodamHazrati, Quantitative evaluation of skull stripping techniques on magnetic resonance images, in World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015).

  14. Y. Wang, J. Nie, P.-T. Yap, F. Shi, L. Guo, and D. Shen, Robust deformable-surface-based skull-stripping for large-scale studies, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2011, pp. 635–642.

  15. A. M. Dale, B. Fischl, and M. I. Sereno, Cortical surface-based analysis: I. Segmentation and surface reconstruction, Neuroimage, vol. 9, no. 2, pp. 179–194, 1999.

    CAS  PubMed  Google Scholar 

  16. D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, Magnetic resonance image tissue classification using a partial volume model, Neuroimage, vol. 13, no. 5, pp. 856–876, 2001.

    CAS  PubMed  Google Scholar 

  17. S. F. Eskildsen et al., BEaST: Brain extraction based on nonlocal segmentation technique, Neuroimage, vol. 59, no. 3, pp. 2362–2373, 2012.

    PubMed  Google Scholar 

  18. H. K. Hahn and H.-O. Peitgen, The skull stripping problem in MRI solved by a single 3D watershed transform BT—Medical Image Computing and Computer-Assisted Intervention—MICCAI 2000, 2000, pp. 134–143.

  19. H. Hwang, Z. H. Rehman, and S. Lee, 3D U-Net for skull stripping in brain MRI, Appl. Sci., vol. 9, no. 3, 2019.

  20. J. E. Iglesias, C. Liu, P. M. Thompson, and Z. Tu, Robust brain extraction across datasets and comparison with publicly available methods, IEEE Trans. Med. Imaging, vol. 30, no. 9, pp. 1617–1634, 2011.

    PubMed  Google Scholar 

  21. P. A. V Miranda, F. A. M. Cappabianco, and J. S. Ide, A case analysis of the impact of prior center of gravity estimation over skull-stripping algorithms in MR images, in 2013 IEEE International Conference on Image Processing, 2013, pp. 675–679.

  22. C. Baillard, P. Hellier, and C. Barillot, Segmentation of brain 3D MR images using level sets and dense registration, Med. Image Anal., vol. 5, no. 3, pp. 185–194, 2001.

    CAS  PubMed  Google Scholar 

  23. S. M. Smith, Fast robust automated brain extraction, Hum. Brain Mapp., vol. 17, no. 3, pp. 143–155, 2002.

    PubMed  PubMed Central  Google Scholar 

  24. J. Qiu and C. Wenqiang, Brain tissues extraction based on improved Brain Extraction Tool algorithm, in 2016 2nd IEEE International Conference on Computer and Communications, ICCC 2016 - Proceedings, 2017, pp. 553–556.

  25. V. Popescu et al., Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis, Neuroimage, vol. 61, no. 4, pp. 1484–1494, 2012.

    CAS  PubMed  Google Scholar 

  26. J. Muschelli, N. L. Ullman, W. A. Mould, P. Vespa, D. F. Hanley, and C. M. Crainiceanu, Validated automatic brain extraction of head CT images, Neuroimage, vol. 114, pp. 379–385, 2015.

    PubMed  Google Scholar 

  27. M. Jenkinson, M. Pechaud, and S. Smith, BET2: MR-based estimation of brain, skull and scalp surfaces, in Eleventh annual meeting of the organization for human brain mapping, 2005, vol. 17, p. 167.

  28. M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images, Neuroimage, vol. 17, no. 2, pp. 825–841, 2002.

    PubMed  Google Scholar 

  29. AFNI program: 3dSkullStrip. [Online]. Available: https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dSkullStrip.html. [Accessed: 10-Nov-2019].

  30. C. Yunjie, Z. Jianwei, and W. Shunfeng, A new fast brain skull stripping method, biomedical engineering and informatics, in Proc. 2nd International Conference on Biomedical Engineering and Informatics, BMEI09, Tianjin, 2009.

  31. J.-X. Liu, Y.-S. Chen, and L.-F. Chen, Accurate and robust extraction of brain regions using a deformable model based on radial basis functions, J. Neurosci. Methods, vol. 183, no. 2, pp. 255–266, 2009.

    PubMed  Google Scholar 

  32. H. Merisaari et al., Gaussian mixture model-based segmentation of MR images taken from premature infant brains, J. Neurosci. Methods, vol. 182, no. 1, pp. 110–122, 2009.

    PubMed  Google Scholar 

  33. K. Somasundaram and P. Kalavathi, Skull stripping of MRI head scans based on Chan-Vese active contour model, Int. J. Knowl. Manag. e-learning, vol. 3, no. 1, pp. 7–14, 2011.

    Google Scholar 

  34. X. Tao and M.-C. Chang, A skull stripping method using deformable surface and tissue classification, in Medical Imaging 2010: Image Processing, 2010, vol. 7623, p. 76233L.

    Google Scholar 

  35. H. Zhang, J. Liu, Z. Zhu, and H. Li, An automated and simple method for brain MR image extraction, Biomed. Eng. Online, vol. 10, no. 1, p. 81, 2011.

    PubMed  PubMed Central  Google Scholar 

  36. K. Somasundaram and R. Siva Shankar, A novel skull stripping method for T1 coronal and T2 axial magnetic resonance images of human head scans based on resonance principle, in Proceedings of the 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012, 2012, vol. 1, pp. 29–35.

  37. F. J. Galdames, F. Jaillet, and C. A. Perez, An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images, J. Neurosci. Methods, vol. 206, no. 2, pp. 103–119, 2012.

    PubMed  Google Scholar 

  38. X. Zeng, L. H. Staib, R. T. Schultz, and J. S. Duncan, Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation, IEEE Trans. Med. Imaging, vol. 18, no. 10, pp. 927–937, 1999.

    CAS  PubMed  Google Scholar 

  39. J. Hwang, Y. Han, and H. Park, Skull-stripping method for brain MRI using a 3D level set with a speedup operator, J. Magn. Reson. Imaging, vol. 34, no. 2, pp. 445–456, 2011.

    PubMed  Google Scholar 

  40. Z. Lao, D. Shen, and C. Davatzikos, Statistical shape model for automatic skull-stripping of brain images, in Proceedings IEEE International Symposium on Biomedical Imaging, 2002, pp. 855–858.

  41. B. D. Ward, 3dIntracranial: Automatic segmentation of intracranial region, Tech. Report, Biophys. Res. Institute, Med. Coll. Wisconsin, UK, 1999.

  42. G. B. Aboutanos, J. Nikanne, N. Watkins, and B. M. Dawan, Model creation and deformation for the automatic segmentation of the brain in MR images, IEEE Trans. Biomed. Eng., vol. 46, no. 11, pp. 1346–1356, 1999.

    CAS  PubMed  Google Scholar 

  43. Y. Gao et al., A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI, Magn. Reson. Imaging, vol. 63, pp. 70–79, 2019.

    PubMed  Google Scholar 

  44. A. Sikka, G. Mittal, D. R. Bathula, and N. C. Krishnan, Supervised deep segmentation network for brain extraction, in Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, 2016, p. 9.

  45. C. Tsai, B. S. Manjunath, and bio3R Jagadeesan, Automated segmentation of brain MR images, Pattern Recognit., vol. 28, no. 12, pp. 1825–1837, 1995.

    Google Scholar 

  46. K. J. Shanthi and M. S. Kumar, Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques, in 2007 International Conference on Intelligent and Advanced Systems, 2007, pp. 422–426.

  47. S. Mohsin, S. Sajjad, Z. Malik, and A. H. Abdullah, Efficient way of skull stripping in MRI to detect brain tumor by applying morphological operations, after detection of false background, Int. J. Inf. Educ. Technol., vol. 2, no. 4, p. 335, 2012.

    Google Scholar 

  48. L. Lemieux, G. Hagemann, K. Krakow, and F. G. Woermann, Fast automatic segmentation of the brain in T1-weighted volume MRI data, in Medical Imaging 1999: Image Processing, 1999, vol. 3661, pp. 152–160.

    Google Scholar 

  49. A. Mikheev, G. Nevsky, S. Govindan, R. Grossman, and H. Rusinek, Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm, J. Magn. Reson. Imaging, vol. 27, no. 6, pp. 1235–1241, 2008.

    PubMed  Google Scholar 

  50. K. Somasundaram and P. Kalavathi, A hybrid method for automatic skull stripping of magnetic resonance images (MRI) of human head scans, 2010 2nd Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2010, pp. 1–5, 2010.

  51. J. R. Hesselink, Basic principles of MR imaging, Department of Radiology, University of California. 2009.

  52. K. Somasundaram and T. Kalaiselvi, Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images, Comput. Biol. Med., vol. 40, no. 10, pp. 811–822, 2010.

    CAS  PubMed  Google Scholar 

  53. M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. R. J. Lewine, Automatic detection of brain contours in MRI data sets, IEEE Trans. Med. Imaging, vol. 12, no. 2, pp. 153–166, 1993.

    CAS  PubMed  Google Scholar 

  54. J. Gao and M. Xie, Skull-stripping MR brain images using anisotropic diffusion filtering and morphological processing, in 2009 International Symposium on Computer Network and Multimedia Technology, 2009, pp. 1–4.

  55. R. W. Cox, AFNI: software for analysis and visualization of functional magnetic resonance neuroimages, Comput. Biomed. Res., vol. 29, no. 3, pp. 162–173, 1996.

    CAS  PubMed  Google Scholar 

  56. S. Huh, T. A. Ketter, K. H. Sohn, and C. Lee, Automated cerebrum segmentation from three-dimensional sagittal brain MR images, Comput. Biol. Med., vol. 32, no. 5, pp. 311–328, 2002.

    PubMed  Google Scholar 

  57. H. Suzuki and Jichiro Toriwaki, Automatic segmentation of head mri images by knowledge guided thresholding, Comput. Med. Imaging Graph., vol. 15, no. 4, pp. 233–240, 1991.

    CAS  PubMed  Google Scholar 

  58. B. M. Dawant, S. L. Hartmann, J.-. Thirion, F. Maes, D. Vandermeulen, and P. Demaerel, Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects, IEEE Trans. Med. Imaging, vol. 18, no. 10, pp. 909–916, 1999.

  59. D. L. Pham and J. L. Prince, Adaptive fuzzy segmentation of magnetic resonance images, IEEE Trans. Med. Imaging, vol. 18, no. 9, pp. 737–752, 1999.

    CAS  PubMed  Google Scholar 

  60. G. B. Aboutanos and B. M. Dawant, Automatic brain segmentation and validation: image-based versus atlas-based deformable models, in Proc.SPIE, 1997, vol. 3034.

  61. M. S. Atkins and B. T. Mackiewich, Fully automatic segmentation of the brain in MRI, IEEE Trans. Med. Imaging, vol. 17, no. 1, pp. 98–107, 1998.

    CAS  PubMed  Google Scholar 

  62. K. Somasundaram and T. Kalaiselvi, Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations, Comput. Biol. Med., vol. 41, no. 8, pp. 716–725, 2011.

    CAS  PubMed  Google Scholar 

  63. S. S. R and K. Somasundaram, Automatic skull stripping using maxima-minima value from quadratic equations for MR images, vol. 5, no. Xii, pp. 647–657, 2017.

  64. G. Fein et al., Statistical parametric mapping of brain morphology: sensitivity is dramatically increased by using brain-extracted images as inputs, Neuroimage, vol. 30, no. 4, pp. 1187–1195, 2006.

    PubMed  Google Scholar 

  65. A. Klein et al., Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, Neuroimage, vol. 46, no. 3, pp. 786–802, 2009.

    PubMed  Google Scholar 

  66. Z. Y. Shan, G. H. Yue, and J. Z. Liu, Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images, Neuroimage, vol. 17, no. 3, pp. 1587–1598, 2002.

    PubMed  Google Scholar 

  67. V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis, and S. K. Warfield, Improved watershed transform for medical image segmentation using prior information, IEEE Trans. Med. Imaging, vol. 23, no. 4, pp. 447–458, 2004.

  68. P. Kalavathi and V. B. S. Prasath, Methods on skull stripping of MRI head scan images—a review, Journal of Digital Imaging, vol. 29, no. 3. Springer New York LLC, pp. 365–379, 01-Jun-2016.

  69. S. A. Sadananthan, W. Zheng, M. W. L. Chee, and V. Zagorodnov, Skull stripping using graph cuts, Neuroimage, vol. 49, no. 1, pp. 225–239, 2010.

    PubMed  Google Scholar 

  70. P. Kalavathi and V. B. S. Prasath, Methods on skull stripping of MRI head scan images—a review, J. Digit. Imaging, vol. 29, no. 3, pp. 365–379, 2016.

    CAS  PubMed  Google Scholar 

  71. K. Somasundaram and P. Kalavathi, Skull stripping from MRI of head scans based on 2D region growing.

  72. K. Somasundaram and P. Kalavathi, “Skull stripping of MRI head scans based on chan-vese active contour model,” Int J Knowl Manag elearning, vol. 3, no. 1, pp. 7–14, 2011.

  73. K. Somasundaram and P. Kalavathi, Brain segmentation in magnetic resonance human head scans using multi-seeded region growing, Imaging Sci. J., vol. 62, no. 5, pp. 273–284, 2014

    Google Scholar 

  74. S. Roy, J. A. Butman, and D. L. Pham, Robust skull stripping using multiple MR image contrasts insensitive to pathology, Neuroimage, vol. 146, pp. 132–147, 2017.

    PubMed  Google Scholar 

  75. K. K. Leung et al., Brain MAPS: An automated, accurate and robust brain extraction technique using a template library, Neuroimage, vol. 55, no. 3, pp. 1091–1108, 2011.

    PubMed  Google Scholar 

  76. B. B. Avants, N. J. Tustison, M. Stauffer, G. Song, B. Wu, and J. C. Gee, The insight ToolKit image registration framework, Frontiers in Neuroinformatics, vol. 8. p. 44, 2014.

    PubMed  PubMed Central  Google Scholar 

  77. R. A. Heckemann et al., Brain extraction using label propagation and group agreement:Pincram, PLoS One, vol. 10, no. 7, p. e0129211, 2015.

    PubMed  PubMed Central  Google Scholar 

  78. F. Ségonne et al., A hybrid approach to the skull stripping problem in MRI, Neuroimage, vol. 22, no. 3, pp. 1060–1075, 2004.

    PubMed  Google Scholar 

  79. T. Kapur, W. E. L. Grimson, W. M. Wells, and R. Kikinis, Segmentation of brain tissue from magnetic resonance images, Med. Image Anal., vol. 1, no. 2, pp. 109–127, 1996.

    CAS  PubMed  Google Scholar 

  80. W. M. Wells, W. Grimson, R. Kikinis, and F. A. Jolesz, Adaptive segmentation of MRI data, in Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1995, vol. 905, pp. 59–69.

  81. D. E. Rex et al., A meta-algorithm for brain extraction in MRI, Neuroimage, vol. 23, no. 2, pp. 625–637, 2004.

    PubMed  Google Scholar 

  82. A. Huang, R. Abugharbieh, R. Tam, and A. Traboulsee, MRI brain extraction with combined expectation maximization and geodesic active contours, in 2006 IEEE International Symposium on Signal Processing and Information Technology, 2006, pp. 107–111.

  83. S. Bauer, T. Fejes, and M. Reyes, A skull-stripping filter for ITK, Insight J., pp. 1–7, 2012.

  84. M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, Image Processing with ImageJ, vol. 11, no. 7. 2004.

  85. K. Rehm, K. Schaper, J. Anderson, R. Woods, S. Stoltzner, and D. Rottenberg, Putting our heads together: a consensus approach to brain/non-brain segmentation in T1-weighted MR volumes, Neuroimage, vol. 22, no. 3, pp. 1262–1270, 2004.

    PubMed  Google Scholar 

  86. A. H. Zhuang, D. J. Valentino, and A. W. Toga, Skull-stripping magnetic resonance brain images using a model-based level set, Neuroimage, vol. 32, no. 1, pp. 79–92, 2006.

    PubMed  Google Scholar 

  87. J. S. Suri, Two-dimensional fast magnetic resonance brain segmentation, IEEE Eng. Med. Biol. Mag., vol. 20, no. 4, pp. 84–95, 2001.

    CAS  PubMed  Google Scholar 

  88. S. Kobashi et al., Fuzzy-ASM based automated skull stripping method from infantile brain MR images, in 2007 IEEE International Conference on Granular Computing (GRC 2007), 2007, p. 632.

  89. J. Sjölund, A. E. Järlideni, M. Andersson, H. Knutsson, and H. Nordström, Skull segmentation in MRI by a support vector machine combining local and global features, in 2014 22nd International Conference on Pattern Recognition, 2014, pp. 3274–3279.

  90. X. Han et al., Brain extraction from normal and pathological images: a joint PCA/Image-Reconstruction approach, Neuroimage, vol. 176, pp. 431–445, 2018.

    PubMed  Google Scholar 

  91. J. Doshi, G. Erus, Y. Ou, B. Gaonkar, and C. Davatzikos, Multi-atlas skull-stripping, Acad. Radiol., vol. 20, no. 12, pp. 1566–1576, 2013.

    PubMed  Google Scholar 

  92. A. Maier, C. Syben, T. Lasser, and C. Riess, A gentle introduction to deep learning in medical image processing, Z. Med. Phys., vol. 29, no. 2, pp. 86–101, 2019.

    PubMed  Google Scholar 

  93. S. W. Hartley, A. I. Scher, E. S. C. Korf, L. R. White, and L. J. Launer, Analysis and validation of automated skull stripping tools: a validation study based on 296 MR images from the Honolulu Asia aging study, Neuroimage, vol. 30, no. 4, pp. 1179–1186, 2006.

    CAS  PubMed  Google Scholar 

  94. J. Kleesiek et al., Deep MRI brain extraction: a 3D convolutional neural network for skull stripping, Neuroimage, vol. 129, pp. 460–469, 2016.

    PubMed  Google Scholar 

  95. S. S. M. Salehi, D. Erdogmus, and A. Gholipour, Auto-Context Convolutional Neural Network (Auto-Net) for brain extraction in magnetic resonance imaging, IEEE Trans. Med. Imaging, vol. 36, no. 11, pp. 2319–2330, 2017.

    PubMed Central  Google Scholar 

  96. E. Shelhamer, J. Long, and T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, 2017.

    PubMed  Google Scholar 

  97. H. Chen, Q. Dou, L. Yu, J. Qin, and P.-A. Heng, VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images, Neuroimage, vol. 170, pp. 446–455, 2018.

    PubMed  Google Scholar 

  98. K. Kamnitsas et al., Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Med. Image Anal., vol. 36, pp. 61–78, 2017.

    PubMed  Google Scholar 

  99. O. Lucena, R. Souza, L. Rittner, R. Frayne, and R. Lotufo, Silver standard masks for data augmentation applied to deep-learning-based skull-stripping, in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 1114–1117.

  100. O. Lucena, R. Souza, L. Rittner, R. Frayne, and R. Lotufo, Convolutional neural networks for skull-stripping in brain MR imaging using Consensus-based Silver standard Masks, arXiv Prepr. arXiv1804.04988, 2018.

  101. Z. Tu and X. Bai, Auto-context and its application to high-level vision tasks and 3D brain image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 10, pp. 1744–1757, 2010.

    PubMed  Google Scholar 

  102. N. H. M. Duy, N. M. Duy, M. T. N. Truong, P. T. Bao, and N. T. Binh, Accurate brain extraction using active shape model and convolutional neural networks, arXiv Prepr. arXiv1802.01268, 2018.

  103. B. Yilmaz, A. Durdu, and G. D. Emlik, A new method for skull stripping in brain MRI using multistable cellular neural networks, Neural Comput. Appl., vol. 29, no. 8, pp. 79–95, 2018.

    Google Scholar 

  104. R. Dey and Y. Hong, CompNet: Complementary Segmentation Network for brain MRI extraction, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018, pp. 628–636.

  105. S. Tchoketch Kebir, S. Mekaoui, and M. Bouhedda, A fully automatic methodology for MRI brain tumour detection and segmentation, Imaging Sci. J., vol. 67, no. 1, pp. 42–62, 2019.

    Google Scholar 

  106. N. H. M. Duy, N. M. Duy, M. T. N. Truong, P. T. Bao, and N. T. Binh, “Accurate brain extraction using Active Shape Model and Convolutional Neural Networks,” Feb. 2018.

  107. K. Boesen et al., Quantitative comparison of four brain extraction algorithms, Neuroimage, vol. 22, no. 3, pp. 1255–1261, 2004.

    PubMed  Google Scholar 

  108. C. Fennema-Notestine et al., Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location, Hum. Brain Mapp., vol. 27, no. 2, pp. 99–113, 2006.

    PubMed  Google Scholar 

  109. S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, IEEE Trans. Med. Imaging, vol. 23, no. 7, pp. 903–921, 2004.

    PubMed  PubMed Central  Google Scholar 

  110. S. Tchoketch Kebir, S. Mekaoui, and M. Bouhedda, “A fully automatic methodology for MRI brain tumour detection and segmentation,” Imaging Sci. J., vol. 67, no. 1, pp. 42–62, 2019.

  111. M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, and H. F. A. Hamed, Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks, EURASIP J. Image Video Process., vol. 2018, no. 1, p. 97, 2018.

  112. Kashyap, V., Li, J. Skull stripping axial FLAIR MRIs of the brain using machine learning

  113. Kavitha Srinivasan, N. N. (2018). An intelligent skull stripping algorithm for MRI image sequences using mathematical morphology

  114. R. Souza et al., An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement, NeuroImage, vol. 170. Academic Press Inc., pp. 482–494, 15-Apr-2018.

  115. O. Lucena, R. Souza, L. Rittner, R. Frayne, and R. Lotufo, Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks, Artif. Intell. Med., vol. 98, pp. 48–58, 2019.

    PubMed  Google Scholar 

  116. S. Roy, D. Bhattacharyya, S. K. Bandyopadhyay, and T.-H. Kim, Artifacts and skull stripping: an application towards the preprocessing for brain abnormalities detection from MRI, Int. J. Control Autom., vol. 10, no. 5, pp. 147–160, 2017.

    Google Scholar 

  117. Q. Zhang, L. Wang, X. Zong, W. Lin, G. Li, and D. Shen, Frnet: Flattened residual network for infant MRI skull stripping, in Proceedings - International Symposium on Biomedical Imaging, 2019, vol. 2019-April, pp. 999–1002.

  118. A. Fedorov, J. Johnson, E. Damaraju, A. Ozerin, V. Calhoun, and S. Plis, End-to-end learning of brain tissue segmentation from imperfect labeling, Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May, pp. 3785–3792, 2017.

  119. Y. Huo et al., 3D whole brain segmentation using spatially localized atlas network tiles, Neuroimage, vol. 194, pp. 105–119, 2019.

    PubMed  Google Scholar 

  120. K. Chen, J. Shen, and F. Scalzo, Skull stripping using confidence segmentation convolution neural network, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11241 LNCS, pp. 15–24.

  121. A. B. Waters, R. A. Mace, K. S. Sawyer, and D. A. Gansler, Identifying errors in Freesurfer automated skull stripping and the incremental utility of manual intervention, Brain Imaging Behav., vol. 13, no. 5, pp. 1281–1291, 2019.

    PubMed  Google Scholar 

  122. Z. Liu, B. Xiao, Y. Li, and Y. Fan, Context-endcoding for neural network-based skull stripping in magnetic resonance imaging, 2019.

  123. C. G. B. Yogananda, B. C. Wagner, G. K. Murugesan, A. Madhuranthakam, and J. A. Maldjian, A deep learning pipeline for automatic skull stripping and brain segmentation, in Proceedings - International Symposium on Biomedical Imaging, 2019, vol. 2019-April, pp. 727–731.

  124. S. Thakur et al., NIMG-40. Robust modality-agnostic skull-stripping in presence of diffuse glioma: a multi-institutional study, Neuro. Oncol., vol. 21, no. Supplement_6, pp. vi170–vi170, 2019.

    PubMed Central  Google Scholar 

  125. N. E. Leal Narváez and E. E. Zurek Varela, A new approach on skull stripping of brain MRI based on saliency detection using dictionary learning and sparse coding, Prospectiva, vol. 17, no. 2, 2019.

  126. H. Z. U. Rehman, Fully automatic and efficient midsagittal plane extraction, alignment, and skull stripping in neuroimages, 한양대학교, 2019.

  127. M. Uhlich et al., Improved brain tumor segmentation via registration-based brain extraction, Forecasting, vol. 1, no. 1, pp. 59–69, 2018.

    Google Scholar 

  128. P. E. Yoo et al., Optimized partial-coverage functional analysis pipeline (OPFAP): a semi-automated pipeline for skull stripping and co-registration of partial-coverage, ultra-high-field functional images, Magn. Reson. Mater. Physics, Biol. Med., vol. 31, no. 5, pp. 621–632, 2018.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is carried out at Medical Imaging and Diagnostics (MID) Lab at COMSATS University Islamabad, under the umbrella of National Center of Artificial Intelligence (NCAI), Pakistan.

Funding

This work has been supported by Higher Education Commission under Grant # 2(1064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basit Raza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, A., Shahid, A.R., Raza, B. et al. State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms. J Digit Imaging 33, 1443–1464 (2020). https://doi.org/10.1007/s10278-020-00367-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-020-00367-5

Keywords

Navigation