Skip to main content

Advertisement

Log in

UMMPerfusion: an Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

To develop a generic Open Source MRI perfusion analysis tool for quantitative parameter mapping to be used in a clinical workflow and methods for quality management of perfusion data. We implemented a classic, pixel-by-pixel deconvolution approach to quantify T1-weighted contrast-enhanced dynamic MR imaging (DCE-MRI) perfusion data as an OsiriX plug-in. It features parallel computing capabilities and an automated reporting scheme for quality management. Furthermore, by our implementation design, it could be easily extendable to other perfusion algorithms. Obtained results are saved as DICOM objects and directly added to the patient study. The plug-in was evaluated on ten MR perfusion data sets of the prostate and a calibration data set by comparing obtained parametric maps (plasma flow, volume of distribution, and mean transit time) to a widely used reference implementation in IDL. For all data, parametric maps could be calculated and the plug-in worked correctly and stable. On average, a deviation of 0.032 ± 0.02 ml/100 ml/min for the plasma flow, 0.004 ± 0.0007 ml/100 ml for the volume of distribution, and 0.037 ± 0.03 s for the mean transit time between our implementation and a reference implementation was observed. By using computer hardware with eight CPU cores, calculation time could be reduced by a factor of 2.5. We developed successfully an Open Source OsiriX plug-in for T1-DCE-MRI perfusion analysis in a routine quality managed clinical environment. Using model-free deconvolution, it allows for perfusion analysis in various clinical applications. By our plug-in, information about measured physiological processes can be obtained and transferred into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Thng CH, Koh TS, Collins DJ, Koh DM: Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 16:1598–1609, 2010

    Article  PubMed  Google Scholar 

  2. Scherr MK, Seitz M, Muller-Lisse UG, Ingrisch M, Reiser MF, Muller-Lisse UL: MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer. Eur J Radiol 76:359–366, 2010

    Article  PubMed  CAS  Google Scholar 

  3. Attenberger UI, et al: Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 31:125–133, 2010

    Article  PubMed  Google Scholar 

  4. Bokacheva L, Rusinek H, Zhang JL, Lee VS: Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 16:597–611, 2008. viii

    Article  PubMed  Google Scholar 

  5. Sourbron S: Compartmental modelling for magnetic resonance renography. Z Med Phys 20:101–114, 2010

    Article  PubMed  Google Scholar 

  6. Sourbron SP, Buckley DL: Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–R33, 2012

    Article  PubMed  CAS  Google Scholar 

  7. Thompson G, Mills SJ, Stivaros SM, Jackson A: Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 20:337–353, 2010

    Article  PubMed  Google Scholar 

  8. Tofts PS, et al: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232, 1999

    Article  PubMed  CAS  Google Scholar 

  9. Ostergaard L: Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717, 2005

    Article  PubMed  Google Scholar 

  10. Buckley DL, Shurrab AAE, Cheung CM, Jones AP, Mamtora H, Kalra PA: Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123, 2006

    Article  PubMed  Google Scholar 

  11. Attenberger U, et al.: Clinical Value of MR-Based Quantification of Renal Perfusion Parameters with a Separable Two-Compartment Model. Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Toronto:3680, 2008

  12. Miller WL, Hodge DO, Tointon SK, Rodeheffer RJ, Nelson SM, Gibbons RJ: Relationship of myocardial perfusion imaging findings to outcome of patients with heart failure and suspected ischemic heart disease. Am Heart J 147:714–720, 2004

    Article  PubMed  Google Scholar 

  13. Futterer JJ, et al: Prostate cancer: local staging at 3-T endorectal MR imaging–early experience. Radiology 238:184–191, 2006

    Article  PubMed  Google Scholar 

  14. Futterer JJ, et al: Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458, 2006

    Article  PubMed  Google Scholar 

  15. Litjens GJS, Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ: Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. SPIE, Orlando, 2011

    Google Scholar 

  16. Weidner AM, et al: Value of multiparametric prostate MRI of the peripheral zone. Z Med Phys 21:198–205, 2011

    Article  PubMed  Google Scholar 

  17. Sorensen AG: Perfusion MR imaging: moving forward. Radiology 249:416–417, 2008

    Article  PubMed  Google Scholar 

  18. Grenier N, et al: Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38:47–55, 2008

    Article  PubMed  Google Scholar 

  19. Sourbron S: Technical aspects of MR perfusion. Eur J Radiol 76:304–313, 2010

    Article  PubMed  Google Scholar 

  20. Cutajar M, Mendichovszky IA, Tofts PS, Gordon I: The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160, 2010

    Article  PubMed  CAS  Google Scholar 

  21. Zöllner FG, et al: Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imaging Graph 33:171–181, 2009

    Article  PubMed  Google Scholar 

  22. Lietzmann F, Zöllner FG, Michaely HJ, Schad LR: Untersuchung von selbstnavigierenden MR-Sequenzen für die Perfusionsbildgebung der Nieren. Z Med Phys 20:124–133, 2010

    Article  PubMed  Google Scholar 

  23. Kosior JC, Frayne R: PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 25:653–659, 2007

    Article  PubMed  Google Scholar 

  24. Sourbron S, Biffar A, Ingrisch M, Fierens Y, Luypaert R: PMI: platform for research in medical imaging. Magn Reson Mater Phy 22:539, 2009

    Google Scholar 

  25. Wittsack HJ, Ritzl A, Modder U: User friendly analysis of MR investigations of the cerebral perfusion: Windows(R)-based image processing. Rofo 174:742–746, 2002

    Article  PubMed  CAS  Google Scholar 

  26. Ferl GZ: DATforDCEMRI: an R package for deconvolution analysis and visualization of DCE-MRI data. J Stat Softw 44:1–18, 2011

    Google Scholar 

  27. Whitcher B, Schmid VJ: Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R. J Stat Softw 44:1–29, 2011

    Google Scholar 

  28. Puech P, Betrouni N, Makni N, Dewalle AS, Villers A, Lemaitre L: Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results. Int J Comput Assist Radiol Surg 4:1–10, 2009

    Article  PubMed  Google Scholar 

  29. Caban JJ, Joshi A, Nagy P: Rapid development of medical imaging tools with open-source libraries. J Digit Imaging 20(Suppl 1):83–93, 2007

    Article  PubMed  Google Scholar 

  30. Sourbron S, Dujardin M, Makkat S, Luypaert R: Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52:429–447, 2007

    Article  PubMed  CAS  Google Scholar 

  31. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725, 1996

    Article  PubMed  Google Scholar 

  32. Sourbron S, Luypaert R, Morhard D, Seelos K, Reiser M, Peller M: Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys Med Biol 52:6761–6778, 2007

    Article  PubMed  CAS  Google Scholar 

  33. Rosset A, Spadola L, Ratib O: OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216, 2004

    Article  PubMed  Google Scholar 

  34. Jalbert F, Paoli JR: Osirix: free and open-source software for medical imagery. Rev Stomatol Chir 109:53–55, 2008

    Article  CAS  Google Scholar 

  35. Rosset A, Spadola L, Pysher L, Ratib O: Informatics in radiology (infoRAD)—navigating the fifth dimension: innovative interface for multidimensional multimodality image navigation. Radiographics 26:299–308, 2006

    Article  PubMed  Google Scholar 

  36. OsiriX Plugins. Available at http://www.osirix-viewer.com/Plugins.html. Accessed 24 Jan 2011

  37. Ratib O, Rosset A, Heuberger J: Open Source software and social networks: disruptive alternatives for medical imaging. Eur J Radiol 78:259–265, 2011

    Article  PubMed  Google Scholar 

  38. Vetter S: Optimising an OsiriX Plug-in for Perfusion Analysis of MR Images Applied University Mannheim, Faculty of Computer Science, Bachelor of Science, Bachelor’s Thesis (24.9.2010 2010)

  39. Apple Inc.: Introducing Blocks and Grand Central Dispatch, http://developer.apple.com/library/mac/#featuredarticles/BlocksGCD/index.html: Apple Inc., 2010

  40. Weidenhagen R, Meirnarakis G, Jauch KW, Becker CR, Kopp R: OsiriX. An open-source solution for planning aorta stent grafts. Gefässchirurgie 13:278–290, 2008

    Article  Google Scholar 

  41. Yamauchi T, et al: Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17:756–759, 2010

    Article  PubMed  Google Scholar 

  42. Calamante F, Gadian DG, Connelly A: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151, 2002

    Article  PubMed  CAS  Google Scholar 

  43. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE: Analysis of myocardial perfusion MRI. J Magn Reson Imaging 19:758–770, 2004

    Article  PubMed  Google Scholar 

  44. Ali B, Hsiao E, Di Carli MF: Combined anatomic and perfusion imaging of the heart. Curr Cardiol Rep 12:90–97, 2010

    Article  PubMed  Google Scholar 

  45. Ohno Y, et al: Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol 188:48–56, 2007

    Article  PubMed  Google Scholar 

  46. Zöllner FG, Zahn K, Schaible T, Schoenberg SO, Schad LR, Neff KW: Quantitative pulmonary perfusion imaging at 3.0 T of 2-year-old children after congenital diaphragmatic hernia repair: initial results. Eur Radiol, 2012. doi:10.1007/s00330-012-2528-9

  47. Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J: Quantification of perfusion and permeability in breast tumors with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging 25:1159–1167, 2007

    Article  PubMed  CAS  Google Scholar 

  48. Aumann S, et al: Quantification of renal perfusion using an intravascular contrast agent (part 1): results in a canine model. Magn Reson Med 49:276–287, 2003

    Article  PubMed  Google Scholar 

  49. Eastwood JD, et al: CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236, 2002

    Article  PubMed  Google Scholar 

  50. Bisdas S, et al: A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol 18:843–850, 2008

    Article  PubMed  Google Scholar 

  51. Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K: Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217, 2009

    Article  PubMed  Google Scholar 

  52. Padhani AR: Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422, 2002

    Article  PubMed  Google Scholar 

  53. Lietzmann F, Zöllner FG, Attenberger UI, Haneder S, Michaely HJ, Schad LR: DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35:868–874, 2011

    Article  PubMed  Google Scholar 

  54. Hansen PC: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, 1998

    Book  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge the financial support from Heinrich-Vetter-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank G. Zöllner.

Additional information

Frank G. Zöllner and Gerald Weisser contributed equally to this study.

Appendix

Appendix

Truncated Singular Value decomposition for Perfusion Analysis

For the tracer kinetic analysis, we modified the deconvolution approach proposed by Ostergaard et al. [31]. This is based on the basic relation for residue detection in linear and stationary systems, which relates the tissue concentrations to the concentrations in the arterial plasma by a convolution:

$$ C(t) = F{C_a}(t) \otimes R(t), $$
(1)

with C(t) the measured tissue concentration, C a (t) the arterial plasma concentrations, R(t) the tissue residue function, and F is the plasma flow. The relation is discretized assuming linear interpolation between measured points, using the Volterra formula in [32]. This produces a matrix equation

$$ {{\bf C}} = \Delta t{{\bf AI}}, $$
(2)

where A is an n × n matrix with n is the number of time points, depending on the values of C a only. The singular value decomposition

$$ {{\bf A}} = {{\bf US}}{{{\bf V}}^{{{\bf T}}}} $$
(3)

is calculated, all singular values S below a given cut-off λ are set to zero, and the pseudo-inverse

$$ {{{\bf A}}^{{ + }}} = {{\bf V}}{{{\bf S}}^{{ + }}}{{{\bf U}}^{\text{T}}} $$
(4)

is calculated. The impulse response I k for each pixel k is then calculated by

$$ {I_k} = \Delta {t^{{ - 1}}}{A^{{ + }}}{C_k} $$
(5)

The value of the regularization parameter λ is fixed in this algorithm. The software sets a default value of 0.15 max (S), but allows the user to select a different value if required. A more detailed discussion of selecting the regularization parameter can be found in [30, 54]. To parameterize the results, the plasma flow F k of each pixel k is calculated as

$$ {F_k} = { \max }\left( {{I_k}} \right) $$
(6)

Using the central-volume theorem and the definition of the residue function we can also determine the volume of distribution as the area under the impulse response

$$ {V_k} = \Delta t\sum\limits_i {{{{\bf I}}_{{ki}}}}, $$
(7)

and the mean transit time

$$ {T_k} = \frac{{{V_k}}}{{{F_k}}} $$
(8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zöllner, F.G., Weisser, G., Reich, M. et al. UMMPerfusion: an Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine. J Digit Imaging 26, 344–352 (2013). https://doi.org/10.1007/s10278-012-9510-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-012-9510-6

Keywords

Navigation