Skip to main content
Log in

Guidelines for representing complex cardinality constraints in binary and ternary relationships

  • Regular Paper
  • Published:
Software & Systems Modeling Aims and scope Submit manuscript

Abstract

Ternary relationships represent the association among three entities whose constraints database designers do not always know how to manage. In other words, it is very difficult for the designer to detect, represent and add constraints in a ternary relationship according to the domain requirements. To remedy the shortcomings in capturing the semantics required for the representation of this kind of relationship, the present paper discusses a practical method to motivate the designer’s use of ternary relationships in a methodological framework. The method shows how to calculate cardinality constraints in binary and ternary relationships and to preserve the associated semantics until the implementation phase of the database development method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrial, J.R.: Data Semantics, pp. 1–59. North-Holland, Amsterdam (1974)

  2. Al-Jumaily, H., Cuadra, D., Martinez, P.: The execution model to transform the associate semantics of cardinality constraints in a relational DBMS. In: Proceedings of the 4st International Conference on Enterprise Information Systems, Ciudad Real, Spain, April 2–6, pp. 819–822 (2002)

  3. Al-Jumaily, H., Cuadra, D., Martinez, P.: Applying a fuzzy approach to relaxing cardinality constraints. In: 15th International Conference on Database and Expert Systems Applications, Lectures Notes, Zaragoza (Spain), pp. 654–662, September 2004

  4. Al-Jumaily, H., Cuadra, D., Martinez, P.: PANDORA CASE Tool: triggers generating for cardinality constraints in RDBMS. In: Proceedings of the IADIS International Conference WWW/Internet 2003, Algarve (Portugal), pp. 999–1002, November 2003

  5. Al-Jumaily, H., Cuadra, D., Martinez, P.: Plugging Active Mechanisms to Control Dynamic Aspects Derived From The Multiplicity Constraint In UML. The Workshop of 7th International Conference on the Unified Modeling Language. Doctoral symposium. Lisbon (Portugal), October (2004)

  6. Badia A.: Entity-relationship modeling revisited. SIGMOD Record 33(1), 77–82 (2004)

    Article  Google Scholar 

  7. Barke R.: Case*Method: Entity Relationship Modelling. Addison Wesley, New York (1990)

    Google Scholar 

  8. Batini C., Ceri S., Navathe S.B.: Conceptual Database Design: An Entity-Relationship Approach. Benjamin/Cummings, San Francisco (1992)

    MATH  Google Scholar 

  9. Batra D., Zanakis H.: A conceptual database design approach based on rules and heuristics. Eur. J. Inf. Syst. 3(3), 228–239 (1994)

    Article  Google Scholar 

  10. Batra D., Antony S.R.: Novice errors in conceptual database design. Eur. J. Inf. Syst. 3(1), 57–69 (1994)

    Article  Google Scholar 

  11. Bruce T.A.: Designing Quality Databases with IDEF1X Information Models. Dorset House, New York (1992)

    Google Scholar 

  12. Calí, A.: Querying Incomplete Data with Logic Programs: ER Strikes Back. Parent, C., et al. (eds.) ER 2007, LNCS 4801, pp. 245–260 (2007)

  13. Camps R.: From ternary relationship to relational tables: a case against common beliefs. ACM/SIGMOD Record 31, 46–49 (2002)

    Article  Google Scholar 

  14. Castro, E., Cuadra, D., Martínez, P., Iglesias, A.: Integrating Intelligent Methodological Tutoring assistant in a CASE Platform: The PANDORA Experience, Informing Science + IT Education Conference 2002, Cork (Ireland), May 2002

  15. Castro E., Cuadra D., Martínez P.: An empirical perspective of using ternary relationship in database conceptual modeling. Inf. Educ. 2(2), 191–200 (2003)

    Google Scholar 

  16. Chen P.P.: The entity-relationship model: toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)

    Article  Google Scholar 

  17. Codd E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)

    Article  MATH  Google Scholar 

  18. Codd E.F.: Extending the database relational model to capture more meaning. ACM Trans. Database Syst. 4(4), 397–434 (1979)

    Article  Google Scholar 

  19. Cuadra D., Iglesias A., Castro E., Martínez P.: Educational experiences detecting, using and representing ternary relationships in database design. IEEE Trans. Educ. 53(3), 358–364 (2010)

    Article  Google Scholar 

  20. Cuadra, D., Martínez, P., Castro, E.: Relationship cardinality constraints in relational database design. Encyclopedia of Information Science and Technology. Idea Group Publishing, IV, pp. 2419–2424 (2005)

  21. Davies I., Green P., Rosemann M., Indulska M., Gallo S.: How do practitioners use conceptual modeling in practice?. Data Knowl. Eng. 58, 358–380 (2006)

    Article  Google Scholar 

  22. Dullea, I.: Song, IL.-Y.: An analysis of the structural validity of ternary relationships in entity-relationship modeling. In: Proceedings of the 7th International Conference on Information and Knowledge Management, pp. 331–339, November 1998

  23. Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.E., Zemke, F.: SQL: 2003 Has Been Published. SIGMOD Record, 33, 1, March 2004

  24. Elmasri R., Navathe S.B.: Fundamentals of Database Systems, 5th edn. Addison-Wesley, New York (2007)

    Google Scholar 

  25. Fahrner C., Vossen G.: A survey of database design transformations based on the entity-relationship model. Data Knowl. Eng. 15, 213–250 (1995)

    Article  MATH  Google Scholar 

  26. Ferg, S.: Cardinality concepts in entity relationship. In: Proceedings of the 10th International Conference on the Entity Relationship Approach (1991)

  27. Garcia-Molina H., Ullman J.D., Widom J.: Database Systems: The Complete Book, 2nd edn. Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  28. Gemino A., Wand Y.: Complexity and clarify in conceptual modeling: comparison of mandatory and optional properties. Data Knowl. Eng. 55(3), 301–326 (2005)

    Article  Google Scholar 

  29. Génova, G., Llorens, J., Martínez, P.: The meaning of multiplicity of N-ary associations in UML. J. Softw. Syst. Model. 1(2), 86–97 (2002). http://www.sosym.org/

    Google Scholar 

  30. Halpin, T.: Information Modeling and Relational Databases: from Conceptual Analysis to Logical Design. Morgan Kaufman, San Francisco (2001)

  31. Hansen G., Hansen J.: Database Management and Design. Prentice-Hall, Upper Saddle River (1995)

    Google Scholar 

  32. Harel D., Rumpe B.: Meaningful Modeling: What’s the Semantics of “Semantics”. IEEE Comput. 37, 64–71 (2004)

    Article  Google Scholar 

  33. Hartmann H.: On implication problem for cardinality constraints and functional dependencies. Ann. Math. Artif. Intell. 33, 253–307 (2001)

    Article  MathSciNet  Google Scholar 

  34. Hartmann H., Link S., Trinh T.: Constraint acquisition for entity-relationship models. Data Knowl. Eng. 68, 1128–1155 (2009)

    Article  Google Scholar 

  35. He Q., Wang Ling T.: An ontology based approach to the integration of entity-relationship schemas. Data Knowl. Eng. 58, 299–326 (2006)

    Article  Google Scholar 

  36. Iglesias, A., Martínez, P., Cuadra, D., Castro, E., Fernandez, F.: Learning to teach database design by trial and error. ICEIS 2002, Proceedings of the 4st International Conference on Enterprise Information Systems, pp. 500–505, Ciudad Real, Spain, April 2–6, 2002

  37. Ishakbeyoglu N., Z.M.: Maintenance of implication integrity constraints under updates to constraints. J. Very Large Database 7(2), 67–78 (1998)

    Article  Google Scholar 

  38. Jones T.H., Song IL-Y.: Binary equivalents of ternary relationships in entity-relationship modeling: a logical decomposition approach. J. Database Manag. 11, 12–19 (2000)

    Article  Google Scholar 

  39. Korth H.F., Silberschatz A., Sudarshan S.: Database Systems Concepts, 5th edn. McGraw-Hill, New York (2005)

    Google Scholar 

  40. Martínez, P., De Miguel, A., Cuadra, D., Castro, E.: Data Conceptual Modeling through Natural Language: Identification and Validation of Relationship Cardinalities. Information Resources Management Association (IRMA 2000), Anchorage (EEUU), pp. 500–504, May 2000

  41. McAllister A.: Complete rules for n-ary relationship cardinality constraints. Data Knowl. Eng. 27, 255–288 (1998)

    Article  MATH  Google Scholar 

  42. Moody D.L., Shanks G.G.: Improving the quality of data models: empirical validation of a quality management framework. Inf. Syst. 28, 619–650 (2003)

    Article  MATH  Google Scholar 

  43. Parent, C., Spaccapietra, S., Zimányi, E.: Spatio-temporal conceptual models: data structures, space and time. In: Proceedings of the 7th ACM International Symposium on Advances in Geographic Information Systems, pp. 26–33 (1999)

  44. Purchase H.C., Welland R., McGill M., Colpoys L.: Comprehension of diagram syntax: an empirical study of entity relationship notations. Int. J. Human-Comput. Stud. 61, 187–203 (2004)

    Article  Google Scholar 

  45. Ram S., Khatri V.: A comprehensive framework for modeling set-based business rules during conceptual database design. Inf. Syst. 30, 89–118 (2005)

    Article  Google Scholar 

  46. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. MacGraw-Hill (2003)

  47. Rational Web site. http://www.rational.com/support/documentation/

  48. Rumbaugh J., Blaha M., Premerlani W.J.: Object Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  49. Song I.Y., Evans M., Park E.K.: A comparative analisys of entity-relationship diagrams. J. Comput. Softw. Eng. 3(4), 427–457 (1995)

    Google Scholar 

  50. Tardieu H., Rochfeld A., Coletti R.: La Méthode MERISE. Tome 1: Principles et Outils. Les Editions d’Organisation, Paris (1983)

    Google Scholar 

  51. Teorey T.J., Yang D., Fry J.P.: A logical design methodology for relational databases using the extended entity-relationship model. ACM Comput. Survey 18(2), 197–222 (1986)

    Article  MATH  Google Scholar 

  52. Teorey T.J.: Database Modeling and Design: The Entity-Relationship Approach, 3rd edn. Morgan Kaufmann, San Mateo (1999)

    Google Scholar 

  53. Thalheim, B.: Achievements and problems of conceptual modelling, active conceptual modeling of learning. In: Lecture Notes in Computer Science, vol. 4512, pp. 72–96 (2008)

  54. Thalheim B.: Entity-Relationship Modeling: Foundations of Database Technology. Springer, Berlin (2000)

    Book  Google Scholar 

  55. Türker C., Gertz M.: Semantic integrity support in SQL:1999 and commercial relational database management systems. Int. J. Very Large Database 10(4), 241–269 (2001)

    Article  MATH  Google Scholar 

  56. http://www.omg.org/technology/documents/formal/uml.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores Cuadra.

Additional information

Communicated by Dr. Perdita Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuadra, D., Martínez, P., Castro, E. et al. Guidelines for representing complex cardinality constraints in binary and ternary relationships. Softw Syst Model 12, 871–889 (2013). https://doi.org/10.1007/s10270-012-0234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-012-0234-3

Keywords

Navigation