Skip to main content
Log in

Immunothérapie et cancer du sein

Immunotherapy and breast cancer

  • Revue de la Littérature / Literature Review
  • Published:
Oncologie

Résumé

Le développement des immunothérapies connaît un essor sans précédent dans de nombreux types tumoraux, cancer du sein inclus. De nombreuses études se sont intéressées à l’évaluation des lymphocytes infiltrant la tumeur ou TILs (tumor-infiltrating lymphocytes) comme facteur pronostique et prédictif de réponse, et il semble se dégager un sous-type de cancer du sein à prédominance lymphocytaire, dont le pronostic est meilleur. On peut supposer que ces tumeurs seraient de bonnes candidates pour l’immunothérapie. Concernant les immune checkpoint inhibitors, même si les résultats des premiers essais évaluant les anti-PD-1 sont moins spectaculaires que dans d’autres types de cancer, il existe un signal d’activité des patients pouvant bénéficier du traitement pour une durée prolongée. Parallèlement, des vaccins ciblant différents antigènes tumoraux (HER2, Tn…) sont développés et ont montré une capacité à induire une réponse immunitaire antitumorale. L’avenir est donc probablement à une association de ces vaccins aux différentes immunothérapies. Toutefois, la présence de marqueur prédictif de réponse manque pour identifier quelles patientes bénéficieraient au mieux de ces thérapies innovantes, et ce d’autant plus que le coût de ces nouveaux traitements est élevé.

Abstract

Immunotherapy development is increasing in several types of tumor, including breast cancer. A large number of studies have focused on the evaluation of tumor-infiltrating lymphocytes, or TILS, as a prognostic and predictive factor, and it seems that a breast cancer sub-type with high rates of TILS has a better prognosis. It can be assumed that these tumors would be good candidates for immunotherapy. Concerning immune checkpoint inhibitors, preliminary results from anti-PD1 administration for breast cancer are less impressive than in other types of cancer, but there are signs of activity in a small proportion of patients who may benefit from treatment over an extended period. At the same time, vaccines targeting various tumor antigens (HER2, Tn, etc.) were developed, and have shown ability to induce an anti-tumor immune response. The future is therefore to a combination of these vaccines with immunotherapy. Nevertheless, the presence of a biomarker to predict response is lacking and we need to identify which patients would benefit from these new and expansive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Demaria S, Pikarsky E, Karin M, et al (2010) Cancer and inflammation: promise for biologic therapy. J Immunother 33:335–51

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arnould L, Gelly M, Penault-Llorca F, et al (2006) Trastuzumabbased treatment of HER2-positive breast cancer: an antibodydependent cellular cytotoxicity mechanism? Br J Cancer 94:259–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mao Y, Qu Q, Chen X, et al (2016) The prognostic value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. PloS One 11:e0152500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salgado R, Denkert C, Demaria S, et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–71

    Article  CAS  PubMed  Google Scholar 

  5. Loi S, Sirtaine N, Piette F, et al (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase 3 randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicinbased chemotherapy: BIG 02-98. J Clin Oncol 31:860–7

    Article  CAS  PubMed  Google Scholar 

  6. Adams S, Gray RJ, Demaria S, et al (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase 3 randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32:2959–66

    Article  PubMed  PubMed Central  Google Scholar 

  7. Loi S, Michiels S, Salgado R, Sirtaine N, et al (2014) Tumorinfiltrating lymphocytes are prognostic in triple-negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25:1544–50

    Article  CAS  PubMed  Google Scholar 

  8. West NR, Milne K, Truong PT, et al (2011) Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res 13:R126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ono M, Tsuda H, Shimizu C, et al (2012) Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat 132:793–805

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi R, Tanaka M, Yano A, et al (2012) Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum Pathol 43:1688–94

    Article  CAS  PubMed  Google Scholar 

  11. de Azambuja E, Holmes AP, Piccart-Gebhart M, et al (2014) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol 15:1137–46

    Article  CAS  PubMed  Google Scholar 

  12. Salgado R, Denkert C, Campbell C, et al (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol 1:448–54

    Article  PubMed  Google Scholar 

  13. Denkert C, von Minckwitz G, Brase JC, et al (2015) Tumorinfiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33:983–91

    Article  CAS  PubMed  Google Scholar 

  14. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  15. Yamazaki T, Pitt JM, Vétizou M, et al (2016) The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA-4 checkpoint blockade. Cell Death Differ 23:1004–15

    Article  CAS  PubMed  Google Scholar 

  16. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10

    Article  CAS  PubMed  Google Scholar 

  17. Topalian SL, Hodi FS, Brahmer JR, et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garon EB, Rizvi NA, Hui R, et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–28

    Article  PubMed  Google Scholar 

  19. Motzer RJ, Escudier B, McDermott DF, et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–13

    Article  CAS  PubMed  Google Scholar 

  20. Borghaei H, Paz-Ares L, Horn L, et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–39

    Article  CAS  PubMed  Google Scholar 

  21. Robert C, Long GV, Brady B, et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–30

    Article  CAS  PubMed  Google Scholar 

  22. Larkin J, Chiarion-Sileni V, Gonzalez R, et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  CAS  PubMed  Google Scholar 

  23. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun S, Fei X, Mao Y, et al (2014) PD-1+ immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother 63:395–406

    Article  CAS  PubMed  Google Scholar 

  25. Nanda R, Chow LQM, Dees EC, et al (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase 1b KEYNOTE-012 Study. J Clin Oncol 34:2460–7

    Article  PubMed  Google Scholar 

  26. Gibson J (2015) Anti-PD-L1 for metastatic triple-negative breast cancer. Lancet Oncol 16:e264

    Article  CAS  PubMed  Google Scholar 

  27. Study of pembrolizumab (MK-3475) monotherapy for metastatic triple-negative breast cancer. NCT02447003

  28. Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3(Surg Sect):1–48

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Emens LA (2012) Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther 12:1597–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mittendorf EA, Clifton GT, Holmes JP, et al (2014) Final report of the phase 1/2 clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in highrisk breast cancer patients. Ann Oncol 25:1735–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clive KS, Tyler JA, Clifton GT, et al (2012) The GP2 peptide: a HER2/neu-based breast cancer vaccine. J Surg Oncol 105:452–8

    Article  CAS  PubMed  Google Scholar 

  32. Mittendorf EA, Ardavanis A, Symanowski J, et al (2016) Primary analysis of a prospective, randomized, single-blinded phase 2 trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Ann Oncol 27:1241–8

    Article  CAS  PubMed  Google Scholar 

  33. Blixt O, Bueti D, Burford B, et al (2011) Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res 13:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Welinder C, Baldetorp B, Blixt O, et al (2013) Primary breast cancer tumors contain high amounts of IgA1 immunoglobulin: an immunohistochemical analysis of a possible carrier of the tumor-associated Tn antigen. PloS One 8:e61749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ibrahim NK, Murray JL, Zhou D, et al (2013) Survival advantage in patients with metastatic breast cancer receiving endocrine therapy plus sialyl-Tn–KLH vaccine: post hoc analysis of a large randomized trial. J Cancer 4:577–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ries CH, Cannarile MA, Hoves S, et al (2014) Targeting tumorassociated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:846–59

    Article  CAS  PubMed  Google Scholar 

  37. Nordstrom JL, Gorlatov S, Zhang W, et al (2011) Antitumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fc? receptor binding properties. Breast Cancer Res 13:R123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Verret.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verret, B., Loirat, D. Immunothérapie et cancer du sein. Oncologie 18, 551–558 (2016). https://doi.org/10.1007/s10269-016-2663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-016-2663-z

Mots clés

Keywords

Navigation